MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1 Structured version   Visualization version   GIF version

Theorem acsfn1 16674
Description: Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn1 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑉   𝑋,𝑎,𝑏   𝐸,𝑎
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem acsfn1
StepHypRef Expression
1 elpwi 4388 . . . . . 6 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
2 ralss 3893 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎𝐸𝑎)))
31, 2syl 17 . . . . 5 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎𝐸𝑎)))
4 vex 3417 . . . . . . . 8 𝑏 ∈ V
54snss 4535 . . . . . . 7 (𝑏𝑎 ↔ {𝑏} ⊆ 𝑎)
65imbi1i 341 . . . . . 6 ((𝑏𝑎𝐸𝑎) ↔ ({𝑏} ⊆ 𝑎𝐸𝑎))
76ralbii 3189 . . . . 5 (∀𝑏𝑋 (𝑏𝑎𝐸𝑎) ↔ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎))
83, 7syl6bb 279 . . . 4 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)))
98rabbiia 3397 . . 3 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)}
10 riinrab 4816 . . 3 (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)}
119, 10eqtr4i 2852 . 2 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} = (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)})
12 mreacs 16671 . . . 4 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
1312adantr 474 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
14 simpll 785 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → 𝑋𝑉)
15 simpr 479 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → 𝐸𝑋)
16 snssi 4557 . . . . . . . 8 (𝑏𝑋 → {𝑏} ⊆ 𝑋)
1716ad2antlr 720 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑏} ⊆ 𝑋)
18 snfi 8307 . . . . . . . 8 {𝑏} ∈ Fin
1918a1i 11 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑏} ∈ Fin)
20 acsfn 16672 . . . . . . 7 (((𝑋𝑉𝐸𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
2114, 15, 17, 19, 20syl22anc 874 . . . . . 6 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
2221ex 403 . . . . 5 ((𝑋𝑉𝑏𝑋) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
2322ralimdva 3171 . . . 4 (𝑋𝑉 → (∀𝑏𝑋 𝐸𝑋 → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
2423imp 397 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
25 mreriincl 16611 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
2613, 24, 25syl2anc 581 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
2711, 26syl5eqel 2910 1 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2166  wral 3117  {crab 3121  cin 3797  wss 3798  𝒫 cpw 4378  {csn 4397   ciin 4741  cfv 6123  Fincfn 8222  Moorecmre 16595  ACScacs 16598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-om 7327  df-1o 7826  df-en 8223  df-fin 8226  df-mre 16599  df-mrc 16600  df-acs 16602
This theorem is referenced by:  acsfn1c  16675  subgacs  17980  sdrgacs  38614
  Copyright terms: Public domain W3C validator