MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1 Structured version   Visualization version   GIF version

Theorem acsfn1 17673
Description: Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn1 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑉   𝑋,𝑎,𝑏   𝐸,𝑎
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem acsfn1
StepHypRef Expression
1 elpwi 4582 . . . . . 6 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
2 ralss 4033 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎𝐸𝑎)))
31, 2syl 17 . . . . 5 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎𝐸𝑎)))
4 vex 3463 . . . . . . . 8 𝑏 ∈ V
54snss 4761 . . . . . . 7 (𝑏𝑎 ↔ {𝑏} ⊆ 𝑎)
65imbi1i 349 . . . . . 6 ((𝑏𝑎𝐸𝑎) ↔ ({𝑏} ⊆ 𝑎𝐸𝑎))
76ralbii 3082 . . . . 5 (∀𝑏𝑋 (𝑏𝑎𝐸𝑎) ↔ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎))
83, 7bitrdi 287 . . . 4 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)))
98rabbiia 3419 . . 3 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)}
10 riinrab 5060 . . 3 (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)}
119, 10eqtr4i 2761 . 2 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} = (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)})
12 mreacs 17670 . . 3 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
13 simpll 766 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → 𝑋𝑉)
14 simpr 484 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → 𝐸𝑋)
15 snssi 4784 . . . . . . . 8 (𝑏𝑋 → {𝑏} ⊆ 𝑋)
1615ad2antlr 727 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑏} ⊆ 𝑋)
17 snfi 9057 . . . . . . . 8 {𝑏} ∈ Fin
1817a1i 11 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑏} ∈ Fin)
19 acsfn 17671 . . . . . . 7 (((𝑋𝑉𝐸𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
2013, 14, 16, 18, 19syl22anc 838 . . . . . 6 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
2120ex 412 . . . . 5 ((𝑋𝑉𝑏𝑋) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
2221ralimdva 3152 . . . 4 (𝑋𝑉 → (∀𝑏𝑋 𝐸𝑋 → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
2322imp 406 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
24 mreriincl 17610 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
2512, 23, 24syl2an2r 685 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
2611, 25eqeltrid 2838 1 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3051  {crab 3415  cin 3925  wss 3926  𝒫 cpw 4575  {csn 4601   ciin 4968  cfv 6531  Fincfn 8959  Moorecmre 17594  ACScacs 17597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-en 8960  df-fin 8963  df-mre 17598  df-mrc 17599  df-acs 17601
This theorem is referenced by:  acsfn1c  17674  subgacs  19144  sdrgacs  20761
  Copyright terms: Public domain W3C validator