Proof of Theorem acsfn1
Step | Hyp | Ref
| Expression |
1 | | elpwi 4542 |
. . . . . 6
⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) |
2 | | ralss 3991 |
. . . . . 6
⊢ (𝑎 ⊆ 𝑋 → (∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀𝑏 ∈ 𝑋 (𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎))) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 𝑋 → (∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀𝑏 ∈ 𝑋 (𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎))) |
4 | | vex 3436 |
. . . . . . . 8
⊢ 𝑏 ∈ V |
5 | 4 | snss 4719 |
. . . . . . 7
⊢ (𝑏 ∈ 𝑎 ↔ {𝑏} ⊆ 𝑎) |
6 | 5 | imbi1i 350 |
. . . . . 6
⊢ ((𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎) ↔ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)) |
7 | 6 | ralbii 3092 |
. . . . 5
⊢
(∀𝑏 ∈
𝑋 (𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎) ↔ ∀𝑏 ∈ 𝑋 ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)) |
8 | 3, 7 | bitrdi 287 |
. . . 4
⊢ (𝑎 ∈ 𝒫 𝑋 → (∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀𝑏 ∈ 𝑋 ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎))) |
9 | 8 | rabbiia 3407 |
. . 3
⊢ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑋 ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} |
10 | | riinrab 5013 |
. . 3
⊢
(𝒫 𝑋 ∩
∩ 𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑋 ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} |
11 | 9, 10 | eqtr4i 2769 |
. 2
⊢ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎} = (𝒫 𝑋 ∩ ∩
𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) |
12 | | mreacs 17367 |
. . 3
⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) |
13 | | simpll 764 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) ∧ 𝐸 ∈ 𝑋) → 𝑋 ∈ 𝑉) |
14 | | simpr 485 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) ∧ 𝐸 ∈ 𝑋) → 𝐸 ∈ 𝑋) |
15 | | snssi 4741 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝑋 → {𝑏} ⊆ 𝑋) |
16 | 15 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) ∧ 𝐸 ∈ 𝑋) → {𝑏} ⊆ 𝑋) |
17 | | snfi 8834 |
. . . . . . . 8
⊢ {𝑏} ∈ Fin |
18 | 17 | a1i 11 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) ∧ 𝐸 ∈ 𝑋) → {𝑏} ∈ Fin) |
19 | | acsfn 17368 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐸 ∈ 𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
20 | 13, 14, 16, 18, 19 | syl22anc 836 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) ∧ 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
21 | 20 | ex 413 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) → (𝐸 ∈ 𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋))) |
22 | 21 | ralimdva 3108 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋))) |
23 | 22 | imp 407 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋) → ∀𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
24 | | mreriincl 17307 |
. . 3
⊢
(((ACS‘𝑋)
∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 ∩ ∩
𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) ∈ (ACS‘𝑋)) |
25 | 12, 23, 24 | syl2an2r 682 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩
𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) ∈ (ACS‘𝑋)) |
26 | 11, 25 | eqeltrid 2843 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |