MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1 Structured version   Visualization version   GIF version

Theorem acsfn1 16924
Description: Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn1 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑉   𝑋,𝑎,𝑏   𝐸,𝑎
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem acsfn1
StepHypRef Expression
1 elpwi 4506 . . . . . 6 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
2 ralss 3985 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎𝐸𝑎)))
31, 2syl 17 . . . . 5 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎𝐸𝑎)))
4 vex 3444 . . . . . . . 8 𝑏 ∈ V
54snss 4679 . . . . . . 7 (𝑏𝑎 ↔ {𝑏} ⊆ 𝑎)
65imbi1i 353 . . . . . 6 ((𝑏𝑎𝐸𝑎) ↔ ({𝑏} ⊆ 𝑎𝐸𝑎))
76ralbii 3133 . . . . 5 (∀𝑏𝑋 (𝑏𝑎𝐸𝑎) ↔ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎))
83, 7syl6bb 290 . . . 4 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)))
98rabbiia 3419 . . 3 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)}
10 riinrab 4969 . . 3 (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)}
119, 10eqtr4i 2824 . 2 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} = (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)})
12 mreacs 16921 . . 3 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
13 simpll 766 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → 𝑋𝑉)
14 simpr 488 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → 𝐸𝑋)
15 snssi 4701 . . . . . . . 8 (𝑏𝑋 → {𝑏} ⊆ 𝑋)
1615ad2antlr 726 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑏} ⊆ 𝑋)
17 snfi 8577 . . . . . . . 8 {𝑏} ∈ Fin
1817a1i 11 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑏} ∈ Fin)
19 acsfn 16922 . . . . . . 7 (((𝑋𝑉𝐸𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
2013, 14, 16, 18, 19syl22anc 837 . . . . . 6 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
2120ex 416 . . . . 5 ((𝑋𝑉𝑏𝑋) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
2221ralimdva 3144 . . . 4 (𝑋𝑉 → (∀𝑏𝑋 𝐸𝑋 → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
2322imp 410 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
24 mreriincl 16861 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
2512, 23, 24syl2an2r 684 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
2611, 25eqeltrid 2894 1 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  wral 3106  {crab 3110  cin 3880  wss 3881  𝒫 cpw 4497  {csn 4525   ciin 4882  cfv 6324  Fincfn 8492  Moorecmre 16845  ACScacs 16848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-en 8493  df-fin 8496  df-mre 16849  df-mrc 16850  df-acs 16852
This theorem is referenced by:  acsfn1c  16925  subgacs  18305  sdrgacs  19573
  Copyright terms: Public domain W3C validator