Proof of Theorem acsfn1
| Step | Hyp | Ref
| Expression |
| 1 | | elpwi 4607 |
. . . . . 6
⊢ (𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋) |
| 2 | | ralss 4058 |
. . . . . 6
⊢ (𝑎 ⊆ 𝑋 → (∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀𝑏 ∈ 𝑋 (𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎))) |
| 3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝑎 ∈ 𝒫 𝑋 → (∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀𝑏 ∈ 𝑋 (𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎))) |
| 4 | | vex 3484 |
. . . . . . . 8
⊢ 𝑏 ∈ V |
| 5 | 4 | snss 4785 |
. . . . . . 7
⊢ (𝑏 ∈ 𝑎 ↔ {𝑏} ⊆ 𝑎) |
| 6 | 5 | imbi1i 349 |
. . . . . 6
⊢ ((𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎) ↔ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)) |
| 7 | 6 | ralbii 3093 |
. . . . 5
⊢
(∀𝑏 ∈
𝑋 (𝑏 ∈ 𝑎 → 𝐸 ∈ 𝑎) ↔ ∀𝑏 ∈ 𝑋 ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)) |
| 8 | 3, 7 | bitrdi 287 |
. . . 4
⊢ (𝑎 ∈ 𝒫 𝑋 → (∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎 ↔ ∀𝑏 ∈ 𝑋 ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎))) |
| 9 | 8 | rabbiia 3440 |
. . 3
⊢ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑋 ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} |
| 10 | | riinrab 5084 |
. . 3
⊢
(𝒫 𝑋 ∩
∩ 𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑋 ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} |
| 11 | 9, 10 | eqtr4i 2768 |
. 2
⊢ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎} = (𝒫 𝑋 ∩ ∩
𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) |
| 12 | | mreacs 17701 |
. . 3
⊢ (𝑋 ∈ 𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋)) |
| 13 | | simpll 767 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) ∧ 𝐸 ∈ 𝑋) → 𝑋 ∈ 𝑉) |
| 14 | | simpr 484 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) ∧ 𝐸 ∈ 𝑋) → 𝐸 ∈ 𝑋) |
| 15 | | snssi 4808 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝑋 → {𝑏} ⊆ 𝑋) |
| 16 | 15 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) ∧ 𝐸 ∈ 𝑋) → {𝑏} ⊆ 𝑋) |
| 17 | | snfi 9083 |
. . . . . . . 8
⊢ {𝑏} ∈ Fin |
| 18 | 17 | a1i 11 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) ∧ 𝐸 ∈ 𝑋) → {𝑏} ∈ Fin) |
| 19 | | acsfn 17702 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐸 ∈ 𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
| 20 | 13, 14, 16, 18, 19 | syl22anc 839 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) ∧ 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
| 21 | 20 | ex 412 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑏 ∈ 𝑋) → (𝐸 ∈ 𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋))) |
| 22 | 21 | ralimdva 3167 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → (∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋 → ∀𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋))) |
| 23 | 22 | imp 406 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋) → ∀𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) |
| 24 | | mreriincl 17641 |
. . 3
⊢
(((ACS‘𝑋)
∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 ∩ ∩
𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) ∈ (ACS‘𝑋)) |
| 25 | 12, 23, 24 | syl2an2r 685 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋) → (𝒫 𝑋 ∩ ∩
𝑏 ∈ 𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎 → 𝐸 ∈ 𝑎)}) ∈ (ACS‘𝑋)) |
| 26 | 11, 25 | eqeltrid 2845 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑏 ∈ 𝑋 𝐸 ∈ 𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏 ∈ 𝑎 𝐸 ∈ 𝑎} ∈ (ACS‘𝑋)) |