MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfn1 Structured version   Visualization version   GIF version

Theorem acsfn1 17704
Description: Algebraicity of a one-argument closure condition. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
acsfn1 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Distinct variable groups:   𝑎,𝑏,𝑉   𝑋,𝑎,𝑏   𝐸,𝑎
Allowed substitution hint:   𝐸(𝑏)

Proof of Theorem acsfn1
StepHypRef Expression
1 elpwi 4607 . . . . . 6 (𝑎 ∈ 𝒫 𝑋𝑎𝑋)
2 ralss 4058 . . . . . 6 (𝑎𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎𝐸𝑎)))
31, 2syl 17 . . . . 5 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 (𝑏𝑎𝐸𝑎)))
4 vex 3484 . . . . . . . 8 𝑏 ∈ V
54snss 4785 . . . . . . 7 (𝑏𝑎 ↔ {𝑏} ⊆ 𝑎)
65imbi1i 349 . . . . . 6 ((𝑏𝑎𝐸𝑎) ↔ ({𝑏} ⊆ 𝑎𝐸𝑎))
76ralbii 3093 . . . . 5 (∀𝑏𝑋 (𝑏𝑎𝐸𝑎) ↔ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎))
83, 7bitrdi 287 . . . 4 (𝑎 ∈ 𝒫 𝑋 → (∀𝑏𝑎 𝐸𝑎 ↔ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)))
98rabbiia 3440 . . 3 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)}
10 riinrab 5084 . . 3 (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑋 ({𝑏} ⊆ 𝑎𝐸𝑎)}
119, 10eqtr4i 2768 . 2 {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} = (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)})
12 mreacs 17701 . . 3 (𝑋𝑉 → (ACS‘𝑋) ∈ (Moore‘𝒫 𝑋))
13 simpll 767 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → 𝑋𝑉)
14 simpr 484 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → 𝐸𝑋)
15 snssi 4808 . . . . . . . 8 (𝑏𝑋 → {𝑏} ⊆ 𝑋)
1615ad2antlr 727 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑏} ⊆ 𝑋)
17 snfi 9083 . . . . . . . 8 {𝑏} ∈ Fin
1817a1i 11 . . . . . . 7 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑏} ∈ Fin)
19 acsfn 17702 . . . . . . 7 (((𝑋𝑉𝐸𝑋) ∧ ({𝑏} ⊆ 𝑋 ∧ {𝑏} ∈ Fin)) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
2013, 14, 16, 18, 19syl22anc 839 . . . . . 6 (((𝑋𝑉𝑏𝑋) ∧ 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
2120ex 412 . . . . 5 ((𝑋𝑉𝑏𝑋) → (𝐸𝑋 → {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
2221ralimdva 3167 . . . 4 (𝑋𝑉 → (∀𝑏𝑋 𝐸𝑋 → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)))
2322imp 406 . . 3 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋))
24 mreriincl 17641 . . 3 (((ACS‘𝑋) ∈ (Moore‘𝒫 𝑋) ∧ ∀𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)} ∈ (ACS‘𝑋)) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
2512, 23, 24syl2an2r 685 . 2 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → (𝒫 𝑋 𝑏𝑋 {𝑎 ∈ 𝒫 𝑋 ∣ ({𝑏} ⊆ 𝑎𝐸𝑎)}) ∈ (ACS‘𝑋))
2611, 25eqeltrid 2845 1 ((𝑋𝑉 ∧ ∀𝑏𝑋 𝐸𝑋) → {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑏𝑎 𝐸𝑎} ∈ (ACS‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3061  {crab 3436  cin 3950  wss 3951  𝒫 cpw 4600  {csn 4626   ciin 4992  cfv 6561  Fincfn 8985  Moorecmre 17625  ACScacs 17628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-en 8986  df-fin 8989  df-mre 17629  df-mrc 17630  df-acs 17632
This theorem is referenced by:  acsfn1c  17705  subgacs  19179  sdrgacs  20802
  Copyright terms: Public domain W3C validator