Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcnveq4 Structured version   Visualization version   GIF version

Theorem relcnveq4 34644
 Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019.)
Assertion
Ref Expression
relcnveq4 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem relcnveq4
StepHypRef Expression
1 relcnveq 34642 . 2 (Rel 𝑅 → (𝑅𝑅𝑅 = 𝑅))
2 relcnveq2 34643 . 2 (Rel 𝑅 → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
31, 2bitrd 271 1 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198  ∀wal 1656   = wceq 1658   ⊆ wss 3799   class class class wbr 4874  ◡ccnv 5342  Rel wrel 5348 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pr 5128 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4875  df-opab 4937  df-xp 5349  df-rel 5350  df-cnv 5351 This theorem is referenced by:  dfsymrel5  34847
 Copyright terms: Public domain W3C validator