| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relcnveq | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| relcnveq | ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnveq3 38309 | . . 3 ⊢ (Rel 𝑅 → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | |
| 2 | cnvsym 6085 | . . 3 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
| 3 | 1, 2 | bitr4di 289 | . 2 ⊢ (Rel 𝑅 → (𝑅 = ◡𝑅 ↔ ◡𝑅 ⊆ 𝑅)) |
| 4 | eqcom 2736 | . 2 ⊢ (𝑅 = ◡𝑅 ↔ ◡𝑅 = 𝑅) | |
| 5 | 3, 4 | bitr3di 286 | 1 ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ⊆ wss 3914 class class class wbr 5107 ◡ccnv 5637 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 |
| This theorem is referenced by: relcnveq4 38312 cnvcosseq 38428 dfsymrel4 38542 |
| Copyright terms: Public domain | W3C validator |