Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcnveq Structured version   Visualization version   GIF version

Theorem relcnveq 36384
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 23-Aug-2018.)
Assertion
Ref Expression
relcnveq (Rel 𝑅 → (𝑅𝑅𝑅 = 𝑅))

Proof of Theorem relcnveq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnveq3 36383 . . 3 (Rel 𝑅 → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
2 cnvsym 6008 . . 3 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
31, 2bitr4di 288 . 2 (Rel 𝑅 → (𝑅 = 𝑅𝑅𝑅))
4 eqcom 2745 . 2 (𝑅 = 𝑅𝑅 = 𝑅)
53, 4bitr3di 285 1 (Rel 𝑅 → (𝑅𝑅𝑅 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wss 3883   class class class wbr 5070  ccnv 5579  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588
This theorem is referenced by:  relcnveq4  36386  cnvcosseq  36487  dfsymrel4  36592
  Copyright terms: Public domain W3C validator