Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcnveq | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 23-Aug-2018.) |
Ref | Expression |
---|---|
relcnveq | ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnveq3 36482 | . . 3 ⊢ (Rel 𝑅 → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | |
2 | cnvsym 6022 | . . 3 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
3 | 1, 2 | bitr4di 288 | . 2 ⊢ (Rel 𝑅 → (𝑅 = ◡𝑅 ↔ ◡𝑅 ⊆ 𝑅)) |
4 | eqcom 2740 | . 2 ⊢ (𝑅 = ◡𝑅 ↔ ◡𝑅 = 𝑅) | |
5 | 3, 4 | bitr3di 285 | 1 ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1535 = wceq 1537 ⊆ wss 3889 class class class wbr 5077 ◡ccnv 5590 Rel wrel 5596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-11 2149 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-br 5078 df-opab 5140 df-xp 5597 df-rel 5598 df-cnv 5599 |
This theorem is referenced by: relcnveq4 36485 cnvcosseq 36586 dfsymrel4 36691 |
Copyright terms: Public domain | W3C validator |