Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcnveq Structured version   Visualization version   GIF version

Theorem relcnveq 38278
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 23-Aug-2018.)
Assertion
Ref Expression
relcnveq (Rel 𝑅 → (𝑅𝑅𝑅 = 𝑅))

Proof of Theorem relcnveq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnveq3 38277 . . 3 (Rel 𝑅 → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
2 cnvsym 6144 . . 3 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
31, 2bitr4di 289 . 2 (Rel 𝑅 → (𝑅 = 𝑅𝑅𝑅))
4 eqcom 2747 . 2 (𝑅 = 𝑅𝑅 = 𝑅)
53, 4bitr3di 286 1 (Rel 𝑅 → (𝑅𝑅𝑅 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wss 3976   class class class wbr 5166  ccnv 5699  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  relcnveq4  38280  cnvcosseq  38393  dfsymrel4  38507
  Copyright terms: Public domain W3C validator