Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcnveq Structured version   Visualization version   GIF version

Theorem relcnveq 38261
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 23-Aug-2018.)
Assertion
Ref Expression
relcnveq (Rel 𝑅 → (𝑅𝑅𝑅 = 𝑅))

Proof of Theorem relcnveq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnveq3 38260 . . 3 (Rel 𝑅 → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
2 cnvsym 6098 . . 3 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
31, 2bitr4di 289 . 2 (Rel 𝑅 → (𝑅 = 𝑅𝑅𝑅))
4 eqcom 2741 . 2 (𝑅 = 𝑅𝑅 = 𝑅)
53, 4bitr3di 286 1 (Rel 𝑅 → (𝑅𝑅𝑅 = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537   = wceq 1539  wss 3924   class class class wbr 5116  ccnv 5650  Rel wrel 5656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5117  df-opab 5179  df-xp 5657  df-rel 5658  df-cnv 5659
This theorem is referenced by:  relcnveq4  38263  cnvcosseq  38376  dfsymrel4  38490
  Copyright terms: Public domain W3C validator