Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcnveq | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 23-Aug-2018.) |
Ref | Expression |
---|---|
relcnveq | ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnveq3 36383 | . . 3 ⊢ (Rel 𝑅 → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | |
2 | cnvsym 6008 | . . 3 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
3 | 1, 2 | bitr4di 288 | . 2 ⊢ (Rel 𝑅 → (𝑅 = ◡𝑅 ↔ ◡𝑅 ⊆ 𝑅)) |
4 | eqcom 2745 | . 2 ⊢ (𝑅 = ◡𝑅 ↔ ◡𝑅 = 𝑅) | |
5 | 3, 4 | bitr3di 285 | 1 ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ⊆ wss 3883 class class class wbr 5070 ◡ccnv 5579 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: relcnveq4 36386 cnvcosseq 36487 dfsymrel4 36592 |
Copyright terms: Public domain | W3C validator |