Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcnveq | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 23-Aug-2018.) |
Ref | Expression |
---|---|
relcnveq | ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnveq3 36011 | . . 3 ⊢ (Rel 𝑅 → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) | |
2 | cnvsym 5947 | . . 3 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
3 | 1, 2 | bitr4di 293 | . 2 ⊢ (Rel 𝑅 → (𝑅 = ◡𝑅 ↔ ◡𝑅 ⊆ 𝑅)) |
4 | eqcom 2766 | . 2 ⊢ (𝑅 = ◡𝑅 ↔ ◡𝑅 = 𝑅) | |
5 | 3, 4 | bitr3di 289 | 1 ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑅 = 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1537 = wceq 1539 ⊆ wss 3859 class class class wbr 5033 ◡ccnv 5524 Rel wrel 5530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-br 5034 df-opab 5096 df-xp 5531 df-rel 5532 df-cnv 5533 |
This theorem is referenced by: relcnveq4 36014 cnvcosseq 36115 dfsymrel4 36220 |
Copyright terms: Public domain | W3C validator |