| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relssdmrn | Structured version Visualization version GIF version | ||
| Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| relssdmrn | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
| 2 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opeldm 5871 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 5 | 2, 3 | opelrn 5907 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ran 𝐴) |
| 6 | 4, 5 | opelxpd 5677 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴)) |
| 7 | 6 | a1i 11 | . 2 ⊢ (Rel 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴))) |
| 8 | 1, 7 | relssdv 5751 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 〈cop 4595 × cxp 5636 dom cdm 5638 ran crn 5639 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: resssxp 6243 cnvssrndm 6244 cossxp 6245 relrelss 6246 relfld 6248 fssxp 6715 oprabss 7497 cnvexg 7900 resfunexgALT 7926 cofunexg 7927 fnexALT 7929 funexw 7930 erssxp 8694 ttrclexg 9676 wunco 10686 trclublem 14961 trclubi 14962 trclub 14964 reltrclfv 14983 imasless 17503 sylow2a 19549 gsum2d 19902 znleval 21464 tsmsxp 24042 relfi 32531 fcnvgreu 32597 elrgspnsubrunlem2 33199 relssinxpdmrn 38331 trclubNEW 43608 trrelsuperreldg 43657 trrelsuperrel2dg 43660 relwf 44957 |
| Copyright terms: Public domain | W3C validator |