| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relssdmrn | Structured version Visualization version GIF version | ||
| Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| relssdmrn | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
| 2 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3448 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opeldm 5861 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 5 | 2, 3 | opelrn 5896 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ran 𝐴) |
| 6 | 4, 5 | opelxpd 5670 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴)) |
| 7 | 6 | a1i 11 | . 2 ⊢ (Rel 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴))) |
| 8 | 1, 7 | relssdv 5742 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3911 〈cop 4591 × cxp 5629 dom cdm 5631 ran crn 5632 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: resssxp 6231 cnvssrndm 6232 cossxp 6233 relrelss 6234 relfld 6236 fssxp 6697 oprabss 7477 cnvexg 7880 resfunexgALT 7906 cofunexg 7907 fnexALT 7909 funexw 7910 erssxp 8671 ttrclexg 9652 wunco 10662 trclublem 14937 trclubi 14938 trclub 14940 reltrclfv 14959 imasless 17479 sylow2a 19533 gsum2d 19886 znleval 21496 tsmsxp 24075 relfi 32581 fcnvgreu 32647 elrgspnsubrunlem2 33215 relssinxpdmrn 38324 trclubNEW 43601 trrelsuperreldg 43650 trrelsuperrel2dg 43653 relwf 44950 |
| Copyright terms: Public domain | W3C validator |