MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssdmrn Structured version   Visualization version   GIF version

Theorem relssdmrn 6299
Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.)
Assertion
Ref Expression
relssdmrn (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))

Proof of Theorem relssdmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (Rel 𝐴 → Rel 𝐴)
2 vex 3492 . . . . 5 𝑥 ∈ V
3 vex 3492 . . . . 5 𝑦 ∈ V
42, 3opeldm 5932 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
52, 3opelrn 5968 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 ∈ ran 𝐴)
64, 5opelxpd 5739 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴))
76a1i 11 . 2 (Rel 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴)))
81, 7relssdv 5812 1 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3976  cop 4654   × cxp 5698  dom cdm 5700  ran crn 5701  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  resssxp  6301  cnvssrndm  6302  cossxp  6303  relrelss  6304  relfld  6306  fssxp  6775  oprabss  7557  cnvexg  7964  resfunexgALT  7988  cofunexg  7989  fnexALT  7991  funexw  7992  erssxp  8786  ttrclexg  9792  wunco  10802  trclublem  15044  trclubi  15045  trclub  15047  reltrclfv  15066  imasless  17600  sylow2a  19661  gsum2d  20014  znleval  21596  tsmsxp  24184  relfi  32624  fcnvgreu  32691  relssinxpdmrn  38305  trclubNEW  43581  trrelsuperreldg  43630  trrelsuperrel2dg  43633
  Copyright terms: Public domain W3C validator