![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssdmrn | Structured version Visualization version GIF version |
Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.) |
Ref | Expression |
---|---|
relssdmrn | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
2 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opeldm 5932 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
5 | 2, 3 | opelrn 5968 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ran 𝐴) |
6 | 4, 5 | opelxpd 5739 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴)) |
7 | 6 | a1i 11 | . 2 ⊢ (Rel 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴))) |
8 | 1, 7 | relssdv 5812 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 〈cop 4654 × cxp 5698 dom cdm 5700 ran crn 5701 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: resssxp 6301 cnvssrndm 6302 cossxp 6303 relrelss 6304 relfld 6306 fssxp 6775 oprabss 7557 cnvexg 7964 resfunexgALT 7988 cofunexg 7989 fnexALT 7991 funexw 7992 erssxp 8786 ttrclexg 9792 wunco 10802 trclublem 15044 trclubi 15045 trclub 15047 reltrclfv 15066 imasless 17600 sylow2a 19661 gsum2d 20014 znleval 21596 tsmsxp 24184 relfi 32624 fcnvgreu 32691 relssinxpdmrn 38305 trclubNEW 43581 trrelsuperreldg 43630 trrelsuperrel2dg 43633 |
Copyright terms: Public domain | W3C validator |