![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssdmrn | Structured version Visualization version GIF version |
Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.) |
Ref | Expression |
---|---|
relssdmrn | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
2 | vex 3476 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3476 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opeldm 5906 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
5 | 2, 3 | opelrn 5941 | . . . 4 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → 𝑦 ∈ ran 𝐴) |
6 | 4, 5 | opelxpd 5714 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴)) |
7 | 6 | a1i 11 | . 2 ⊢ (Rel 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴))) |
8 | 1, 7 | relssdv 5787 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ⊆ wss 3947 ⟨cop 4633 × cxp 5673 dom cdm 5675 ran crn 5676 Rel wrel 5680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-dm 5685 df-rn 5686 |
This theorem is referenced by: resssxp 6268 cnvssrndm 6269 cossxp 6270 relrelss 6271 relfld 6273 fssxp 6744 oprabss 7517 cnvexg 7917 resfunexgALT 7936 cofunexg 7937 fnexALT 7939 funexw 7940 erssxp 8728 ttrclexg 9720 wunco 10730 trclublem 14946 trclubi 14947 trclub 14949 reltrclfv 14968 imasless 17490 sylow2a 19528 gsum2d 19881 znleval 21329 tsmsxp 23879 relfi 32100 fcnvgreu 32165 relssinxpdmrn 37521 trclubNEW 42672 trrelsuperreldg 42721 trrelsuperrel2dg 42724 |
Copyright terms: Public domain | W3C validator |