| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relssdmrn | Structured version Visualization version GIF version | ||
| Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| relssdmrn | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opeldm 5850 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 5 | 2, 3 | opelrn 5885 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ran 𝐴) |
| 6 | 4, 5 | opelxpd 5658 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴)) |
| 7 | 6 | a1i 11 | . 2 ⊢ (Rel 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴))) |
| 8 | 1, 7 | relssdv 5731 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3903 〈cop 4583 × cxp 5617 dom cdm 5619 ran crn 5620 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: resssxp 6218 cnvssrndm 6219 cossxp 6220 relrelss 6221 relfld 6223 fssxp 6679 oprabss 7457 cnvexg 7857 resfunexgALT 7883 cofunexg 7884 fnexALT 7886 funexw 7887 erssxp 8648 ttrclexg 9619 wunco 10627 trclublem 14902 trclubi 14903 trclub 14905 reltrclfv 14924 imasless 17444 sylow2a 19498 gsum2d 19851 znleval 21461 tsmsxp 24040 relfi 32546 fcnvgreu 32617 elrgspnsubrunlem2 33189 relssinxpdmrn 38327 trclubNEW 43602 trrelsuperreldg 43651 trrelsuperrel2dg 43654 relwf 44951 |
| Copyright terms: Public domain | W3C validator |