MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssdmrn Structured version   Visualization version   GIF version

Theorem relssdmrn 6229
Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.)
Assertion
Ref Expression
relssdmrn (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))

Proof of Theorem relssdmrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (Rel 𝐴 → Rel 𝐴)
2 vex 3448 . . . . 5 𝑥 ∈ V
3 vex 3448 . . . . 5 𝑦 ∈ V
42, 3opeldm 5861 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
52, 3opelrn 5896 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑦 ∈ ran 𝐴)
64, 5opelxpd 5670 . . 3 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴))
76a1i 11 . 2 (Rel 𝐴 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ (dom 𝐴 × ran 𝐴)))
81, 7relssdv 5742 1 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3911  cop 4591   × cxp 5629  dom cdm 5631  ran crn 5632  Rel wrel 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642
This theorem is referenced by:  resssxp  6231  cnvssrndm  6232  cossxp  6233  relrelss  6234  relfld  6236  fssxp  6697  oprabss  7477  cnvexg  7880  resfunexgALT  7906  cofunexg  7907  fnexALT  7909  funexw  7910  erssxp  8671  ttrclexg  9652  wunco  10662  trclublem  14937  trclubi  14938  trclub  14940  reltrclfv  14959  imasless  17479  sylow2a  19533  gsum2d  19886  znleval  21496  tsmsxp  24075  relfi  32581  fcnvgreu  32647  elrgspnsubrunlem2  33215  relssinxpdmrn  38324  trclubNEW  43601  trrelsuperreldg  43650  trrelsuperrel2dg  43653  relwf  44950
  Copyright terms: Public domain W3C validator