![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relssdmrn | Structured version Visualization version GIF version |
Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.) |
Ref | Expression |
---|---|
relssdmrn | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
2 | vex 3481 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3481 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opeldm 5920 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
5 | 2, 3 | opelrn 5956 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ran 𝐴) |
6 | 4, 5 | opelxpd 5727 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴)) |
7 | 6 | a1i 11 | . 2 ⊢ (Rel 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴))) |
8 | 1, 7 | relssdv 5800 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ⊆ wss 3962 〈cop 4636 × cxp 5686 dom cdm 5688 ran crn 5689 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-dm 5698 df-rn 5699 |
This theorem is referenced by: resssxp 6291 cnvssrndm 6292 cossxp 6293 relrelss 6294 relfld 6296 fssxp 6763 oprabss 7539 cnvexg 7946 resfunexgALT 7970 cofunexg 7971 fnexALT 7973 funexw 7974 erssxp 8766 ttrclexg 9760 wunco 10770 trclublem 15030 trclubi 15031 trclub 15033 reltrclfv 15052 imasless 17586 sylow2a 19651 gsum2d 20004 znleval 21590 tsmsxp 24178 relfi 32621 fcnvgreu 32689 relssinxpdmrn 38330 trclubNEW 43608 trrelsuperreldg 43657 trrelsuperrel2dg 43660 relwf 44941 |
Copyright terms: Public domain | W3C validator |