| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relssdmrn | Structured version Visualization version GIF version | ||
| Description: A relation is included in the Cartesian product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.) (Proof shortened by SN, 23-Dec-2024.) |
| Ref | Expression |
|---|---|
| relssdmrn | ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (Rel 𝐴 → Rel 𝐴) | |
| 2 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3454 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opeldm 5874 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
| 5 | 2, 3 | opelrn 5910 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑦 ∈ ran 𝐴) |
| 6 | 4, 5 | opelxpd 5680 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴)) |
| 7 | 6 | a1i 11 | . 2 ⊢ (Rel 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (dom 𝐴 × ran 𝐴))) |
| 8 | 1, 7 | relssdv 5754 | 1 ⊢ (Rel 𝐴 → 𝐴 ⊆ (dom 𝐴 × ran 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3917 〈cop 4598 × cxp 5639 dom cdm 5641 ran crn 5642 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: resssxp 6246 cnvssrndm 6247 cossxp 6248 relrelss 6249 relfld 6251 fssxp 6718 oprabss 7500 cnvexg 7903 resfunexgALT 7929 cofunexg 7930 fnexALT 7932 funexw 7933 erssxp 8697 ttrclexg 9683 wunco 10693 trclublem 14968 trclubi 14969 trclub 14971 reltrclfv 14990 imasless 17510 sylow2a 19556 gsum2d 19909 znleval 21471 tsmsxp 24049 relfi 32538 fcnvgreu 32604 elrgspnsubrunlem2 33206 relssinxpdmrn 38338 trclubNEW 43615 trrelsuperreldg 43664 trrelsuperrel2dg 43667 relwf 44964 |
| Copyright terms: Public domain | W3C validator |