MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcnvtrg Structured version   Visualization version   GIF version

Theorem relcnvtrg 6288
Description: General form of relcnvtr 6289. (Contributed by Peter Mazsa, 17-Oct-2023.)
Assertion
Ref Expression
relcnvtrg ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑅𝑆) ⊆ 𝑇 ↔ (𝑆𝑅) ⊆ 𝑇))

Proof of Theorem relcnvtrg
StepHypRef Expression
1 cnvco 5899 . . 3 (𝑅𝑆) = (𝑆𝑅)
2 cnvss 5886 . . 3 ((𝑅𝑆) ⊆ 𝑇(𝑅𝑆) ⊆ 𝑇)
31, 2eqsstrrid 4045 . 2 ((𝑅𝑆) ⊆ 𝑇 → (𝑆𝑅) ⊆ 𝑇)
4 cnvco 5899 . . . 4 (𝑆𝑅) = (𝑅𝑆)
5 cnvss 5886 . . . 4 ((𝑆𝑅) ⊆ 𝑇(𝑆𝑅) ⊆ 𝑇)
6 sseq1 4021 . . . . 5 ((𝑆𝑅) = (𝑅𝑆) → ((𝑆𝑅) ⊆ 𝑇 ↔ (𝑅𝑆) ⊆ 𝑇))
7 dfrel2 6211 . . . . . . . . . 10 (Rel 𝑅𝑅 = 𝑅)
87biimpi 216 . . . . . . . . 9 (Rel 𝑅𝑅 = 𝑅)
983ad2ant1 1132 . . . . . . . 8 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → 𝑅 = 𝑅)
10 dfrel2 6211 . . . . . . . . . 10 (Rel 𝑆𝑆 = 𝑆)
1110biimpi 216 . . . . . . . . 9 (Rel 𝑆𝑆 = 𝑆)
12113ad2ant2 1133 . . . . . . . 8 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → 𝑆 = 𝑆)
139, 12coeq12d 5878 . . . . . . 7 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → (𝑅𝑆) = (𝑅𝑆))
14 dfrel2 6211 . . . . . . . . 9 (Rel 𝑇𝑇 = 𝑇)
1514biimpi 216 . . . . . . . 8 (Rel 𝑇𝑇 = 𝑇)
16153ad2ant3 1134 . . . . . . 7 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → 𝑇 = 𝑇)
1713, 16sseq12d 4029 . . . . . 6 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑅𝑆) ⊆ 𝑇 ↔ (𝑅𝑆) ⊆ 𝑇))
1817biimpcd 249 . . . . 5 ((𝑅𝑆) ⊆ 𝑇 → ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → (𝑅𝑆) ⊆ 𝑇))
196, 18biimtrdi 253 . . . 4 ((𝑆𝑅) = (𝑅𝑆) → ((𝑆𝑅) ⊆ 𝑇 → ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → (𝑅𝑆) ⊆ 𝑇)))
204, 5, 19mpsyl 68 . . 3 ((𝑆𝑅) ⊆ 𝑇 → ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → (𝑅𝑆) ⊆ 𝑇))
2120com12 32 . 2 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑆𝑅) ⊆ 𝑇 → (𝑅𝑆) ⊆ 𝑇))
223, 21impbid2 226 1 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑅𝑆) ⊆ 𝑇 ↔ (𝑆𝑅) ⊆ 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1537  wss 3963  ccnv 5688  ccom 5693  Rel wrel 5694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698
This theorem is referenced by:  relcnvtr  6289
  Copyright terms: Public domain W3C validator