MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcnvtrg Structured version   Visualization version   GIF version

Theorem relcnvtrg 6159
Description: General form of relcnvtr 6160. (Contributed by Peter Mazsa, 17-Oct-2023.)
Assertion
Ref Expression
relcnvtrg ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑅𝑆) ⊆ 𝑇 ↔ (𝑆𝑅) ⊆ 𝑇))

Proof of Theorem relcnvtrg
StepHypRef Expression
1 cnvco 5783 . . 3 (𝑅𝑆) = (𝑆𝑅)
2 cnvss 5770 . . 3 ((𝑅𝑆) ⊆ 𝑇(𝑅𝑆) ⊆ 𝑇)
31, 2eqsstrrid 3966 . 2 ((𝑅𝑆) ⊆ 𝑇 → (𝑆𝑅) ⊆ 𝑇)
4 cnvco 5783 . . . 4 (𝑆𝑅) = (𝑅𝑆)
5 cnvss 5770 . . . 4 ((𝑆𝑅) ⊆ 𝑇(𝑆𝑅) ⊆ 𝑇)
6 sseq1 3942 . . . . 5 ((𝑆𝑅) = (𝑅𝑆) → ((𝑆𝑅) ⊆ 𝑇 ↔ (𝑅𝑆) ⊆ 𝑇))
7 dfrel2 6081 . . . . . . . . . 10 (Rel 𝑅𝑅 = 𝑅)
87biimpi 215 . . . . . . . . 9 (Rel 𝑅𝑅 = 𝑅)
983ad2ant1 1131 . . . . . . . 8 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → 𝑅 = 𝑅)
10 dfrel2 6081 . . . . . . . . . 10 (Rel 𝑆𝑆 = 𝑆)
1110biimpi 215 . . . . . . . . 9 (Rel 𝑆𝑆 = 𝑆)
12113ad2ant2 1132 . . . . . . . 8 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → 𝑆 = 𝑆)
139, 12coeq12d 5762 . . . . . . 7 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → (𝑅𝑆) = (𝑅𝑆))
14 dfrel2 6081 . . . . . . . . 9 (Rel 𝑇𝑇 = 𝑇)
1514biimpi 215 . . . . . . . 8 (Rel 𝑇𝑇 = 𝑇)
16153ad2ant3 1133 . . . . . . 7 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → 𝑇 = 𝑇)
1713, 16sseq12d 3950 . . . . . 6 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑅𝑆) ⊆ 𝑇 ↔ (𝑅𝑆) ⊆ 𝑇))
1817biimpcd 248 . . . . 5 ((𝑅𝑆) ⊆ 𝑇 → ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → (𝑅𝑆) ⊆ 𝑇))
196, 18syl6bi 252 . . . 4 ((𝑆𝑅) = (𝑅𝑆) → ((𝑆𝑅) ⊆ 𝑇 → ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → (𝑅𝑆) ⊆ 𝑇)))
204, 5, 19mpsyl 68 . . 3 ((𝑆𝑅) ⊆ 𝑇 → ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → (𝑅𝑆) ⊆ 𝑇))
2120com12 32 . 2 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑆𝑅) ⊆ 𝑇 → (𝑅𝑆) ⊆ 𝑇))
223, 21impbid2 225 1 ((Rel 𝑅 ∧ Rel 𝑆 ∧ Rel 𝑇) → ((𝑅𝑆) ⊆ 𝑇 ↔ (𝑆𝑅) ⊆ 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wss 3883  ccnv 5579  ccom 5584  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589
This theorem is referenced by:  relcnvtr  6160
  Copyright terms: Public domain W3C validator