Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cossxrncnvepresex Structured version   Visualization version   GIF version

Theorem 1cossxrncnvepresex 38365
Description: Sufficient condition for a restricted converse epsilon range Cartesian product to be a set. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
1cossxrncnvepresex ((𝐴𝑉𝑅𝑊) → ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)

Proof of Theorem 1cossxrncnvepresex
StepHypRef Expression
1 xrncnvepresex 38351 . 2 ((𝐴𝑉𝑅𝑊) → (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
2 cossex 38362 . 2 ((𝑅 ⋉ ( E ↾ 𝐴)) ∈ V → ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
31, 2syl 17 1 ((𝐴𝑉𝑅𝑊) → ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2104  Vcvv 3477   E cep 5581  ccnv 5682  cres 5685  cxrn 38121  ccoss 38122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-eprel 5582  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-fo 6564  df-fv 6566  df-1st 8007  df-2nd 8008  df-xrn 38314  df-coss 38354
This theorem is referenced by:  pets  38795
  Copyright terms: Public domain W3C validator