![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcoss3 | Structured version Visualization version GIF version |
Description: The class of cosets by 𝑅 is reflexive, see dfrefrel3 38512. (Contributed by Peter Mazsa, 30-Jul-2019.) |
Ref | Expression |
---|---|
refrelcoss3 | ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelcosslem 38458 | . . . 4 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 | |
2 | idinxpssinxp4 38316 | . . . 4 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥) | |
3 | 1, 2 | mpbir 231 | . . 3 ⊢ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) |
4 | rncossdmcoss 38451 | . . . . 5 ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 | |
5 | 4 | raleqi 3324 | . . . 4 ⊢ (∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦)) |
6 | 5 | ralbii 3093 | . . 3 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦)) |
7 | 3, 6 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) |
8 | relcoss 38419 | . 2 ⊢ Rel ≀ 𝑅 | |
9 | 7, 8 | pm3.2i 470 | 1 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wral 3061 class class class wbr 5151 dom cdm 5693 ran crn 5694 Rel wrel 5698 ≀ ccoss 38176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-coss 38407 |
This theorem is referenced by: refrelcoss2 38460 |
Copyright terms: Public domain | W3C validator |