| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcoss3 | Structured version Visualization version GIF version | ||
| Description: The class of cosets by 𝑅 is reflexive, see dfrefrel3 38559. (Contributed by Peter Mazsa, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| refrelcoss3 | ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelcosslem 38505 | . . . 4 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 | |
| 2 | idinxpssinxp4 38360 | . . . 4 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥) | |
| 3 | 1, 2 | mpbir 231 | . . 3 ⊢ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) |
| 4 | rncossdmcoss 38498 | . . . . 5 ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 | |
| 5 | 4 | raleqi 3290 | . . . 4 ⊢ (∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦)) |
| 6 | 5 | ralbii 3078 | . . 3 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦)) |
| 7 | 3, 6 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) |
| 8 | relcoss 38466 | . 2 ⊢ Rel ≀ 𝑅 | |
| 9 | 7, 8 | pm3.2i 470 | 1 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3047 class class class wbr 5091 dom cdm 5616 ran crn 5617 Rel wrel 5621 ≀ ccoss 38221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-coss 38454 |
| This theorem is referenced by: refrelcoss2 38507 |
| Copyright terms: Public domain | W3C validator |