![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcoss3 | Structured version Visualization version GIF version |
Description: The class of cosets by 𝑅 is reflexive, see dfrefrel3 37899. (Contributed by Peter Mazsa, 30-Jul-2019.) |
Ref | Expression |
---|---|
refrelcoss3 | ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refrelcosslem 37845 | . . . 4 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 | |
2 | idinxpssinxp4 37702 | . . . 4 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥) | |
3 | 1, 2 | mpbir 230 | . . 3 ⊢ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) |
4 | rncossdmcoss 37838 | . . . . 5 ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 | |
5 | 4 | raleqi 3317 | . . . 4 ⊢ (∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦)) |
6 | 5 | ralbii 3087 | . . 3 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦)) |
7 | 3, 6 | mpbir 230 | . 2 ⊢ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) |
8 | relcoss 37806 | . 2 ⊢ Rel ≀ 𝑅 | |
9 | 7, 8 | pm3.2i 470 | 1 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wral 3055 class class class wbr 5141 dom cdm 5669 ran crn 5670 Rel wrel 5674 ≀ ccoss 37556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-coss 37794 |
This theorem is referenced by: refrelcoss2 37847 |
Copyright terms: Public domain | W3C validator |