Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelcoss3 Structured version   Visualization version   GIF version

Theorem refrelcoss3 38506
Description: The class of cosets by 𝑅 is reflexive, see dfrefrel3 38559. (Contributed by Peter Mazsa, 30-Jul-2019.)
Assertion
Ref Expression
refrelcoss3 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅)
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem refrelcoss3
StepHypRef Expression
1 refrelcosslem 38505 . . . 4 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
2 idinxpssinxp4 38360 . . . 4 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
31, 2mpbir 231 . . 3 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)
4 rncossdmcoss 38498 . . . . 5 ran ≀ 𝑅 = dom ≀ 𝑅
54raleqi 3290 . . . 4 (∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦))
65ralbii 3078 . . 3 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦))
73, 6mpbir 231 . 2 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)
8 relcoss 38466 . 2 Rel ≀ 𝑅
97, 8pm3.2i 470 1 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3047   class class class wbr 5091  dom cdm 5616  ran crn 5617  Rel wrel 5621  ccoss 38221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-coss 38454
This theorem is referenced by:  refrelcoss2  38507
  Copyright terms: Public domain W3C validator