Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelcoss3 Structured version   Visualization version   GIF version

Theorem refrelcoss3 38459
Description: The class of cosets by 𝑅 is reflexive, see dfrefrel3 38512. (Contributed by Peter Mazsa, 30-Jul-2019.)
Assertion
Ref Expression
refrelcoss3 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅)
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem refrelcoss3
StepHypRef Expression
1 refrelcosslem 38458 . . . 4 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
2 idinxpssinxp4 38316 . . . 4 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
31, 2mpbir 231 . . 3 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)
4 rncossdmcoss 38451 . . . . 5 ran ≀ 𝑅 = dom ≀ 𝑅
54raleqi 3324 . . . 4 (∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦))
65ralbii 3093 . . 3 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦))
73, 6mpbir 231 . 2 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)
8 relcoss 38419 . 2 Rel ≀ 𝑅
97, 8pm3.2i 470 1 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3061   class class class wbr 5151  dom cdm 5693  ran crn 5694  Rel wrel 5698  ccoss 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-coss 38407
This theorem is referenced by:  refrelcoss2  38460
  Copyright terms: Public domain W3C validator