Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelcoss3 Structured version   Visualization version   GIF version

Theorem refrelcoss3 38638
Description: The class of cosets by 𝑅 is reflexive, see dfrefrel3 38681. (Contributed by Peter Mazsa, 30-Jul-2019.)
Assertion
Ref Expression
refrelcoss3 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅)
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem refrelcoss3
StepHypRef Expression
1 refrelcosslem 38637 . . . 4 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
2 idinxpssinxp4 38431 . . . 4 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
31, 2mpbir 231 . . 3 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)
4 rncossdmcoss 38630 . . . . 5 ran ≀ 𝑅 = dom ≀ 𝑅
54raleqi 3291 . . . 4 (∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦))
65ralbii 3079 . . 3 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦))
73, 6mpbir 231 . 2 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)
8 relcoss 38598 . 2 Rel ≀ 𝑅
97, 8pm3.2i 470 1 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wral 3048   class class class wbr 5095  dom cdm 5621  ran crn 5622  Rel wrel 5626  ccoss 38295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-coss 38586
This theorem is referenced by:  refrelcoss2  38639
  Copyright terms: Public domain W3C validator