Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrelcoss3 Structured version   Visualization version   GIF version

Theorem refrelcoss3 36723
Description: The class of cosets by 𝑅 is reflexive, see dfrefrel3 36776. (Contributed by Peter Mazsa, 30-Jul-2019.)
Assertion
Ref Expression
refrelcoss3 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅)
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem refrelcoss3
StepHypRef Expression
1 refrelcosslem 36722 . . . 4 𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥
2 idinxpssinxp4 36579 . . . 4 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥𝑅𝑥)
31, 2mpbir 230 . . 3 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)
4 rncossdmcoss 36715 . . . . 5 ran ≀ 𝑅 = dom ≀ 𝑅
54raleqi 3307 . . . 4 (∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦))
65ralbii 3092 . . 3 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦))
73, 6mpbir 230 . 2 𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦)
8 relcoss 36683 . 2 Rel ≀ 𝑅
97, 8pm3.2i 471 1 (∀𝑥 ∈ dom ≀ 𝑅𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦𝑥𝑅𝑦) ∧ Rel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wral 3061   class class class wbr 5089  dom cdm 5614  ran crn 5615  Rel wrel 5619  ccoss 36431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-coss 36671
This theorem is referenced by:  refrelcoss2  36724
  Copyright terms: Public domain W3C validator