| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refrelcoss3 | Structured version Visualization version GIF version | ||
| Description: The class of cosets by 𝑅 is reflexive, see dfrefrel3 38476. (Contributed by Peter Mazsa, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| refrelcoss3 | ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refrelcosslem 38422 | . . . 4 ⊢ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥 | |
| 2 | idinxpssinxp4 38280 | . . . 4 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅𝑥 ≀ 𝑅𝑥) | |
| 3 | 1, 2 | mpbir 231 | . . 3 ⊢ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) |
| 4 | rncossdmcoss 38415 | . . . . 5 ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 | |
| 5 | 4 | raleqi 3307 | . . . 4 ⊢ (∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦)) |
| 6 | 5 | ralbii 3081 | . . 3 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ↔ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ dom ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦)) |
| 7 | 3, 6 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) |
| 8 | relcoss 38383 | . 2 ⊢ Rel ≀ 𝑅 | |
| 9 | 7, 8 | pm3.2i 470 | 1 ⊢ (∀𝑥 ∈ dom ≀ 𝑅∀𝑦 ∈ ran ≀ 𝑅(𝑥 = 𝑦 → 𝑥 ≀ 𝑅𝑦) ∧ Rel ≀ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wral 3050 class class class wbr 5123 dom cdm 5665 ran crn 5666 Rel wrel 5670 ≀ ccoss 38141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-coss 38371 |
| This theorem is referenced by: refrelcoss2 38424 |
| Copyright terms: Public domain | W3C validator |