![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleccossin | Structured version Visualization version GIF version |
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.) |
Ref | Expression |
---|---|
eleccossin | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3927 | . . 3 ⊢ (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐵 ∈ [𝐴] ≀ 𝑅 ∧ 𝐵 ∈ [𝐶] ≀ 𝑅)) | |
2 | relcoss 36931 | . . . . 5 ⊢ Rel ≀ 𝑅 | |
3 | relelec 8696 | . . . . 5 ⊢ (Rel ≀ 𝑅 → (𝐵 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐵)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐵) |
5 | relelec 8696 | . . . . 5 ⊢ (Rel ≀ 𝑅 → (𝐵 ∈ [𝐶] ≀ 𝑅 ↔ 𝐶 ≀ 𝑅𝐵)) | |
6 | 2, 5 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ [𝐶] ≀ 𝑅 ↔ 𝐶 ≀ 𝑅𝐵) |
7 | 4, 6 | anbi12i 628 | . . 3 ⊢ ((𝐵 ∈ [𝐴] ≀ 𝑅 ∧ 𝐵 ∈ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵)) |
8 | 1, 7 | bitri 275 | . 2 ⊢ (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵)) |
9 | brcosscnvcoss 36942 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ 𝑅𝐶 ↔ 𝐶 ≀ 𝑅𝐵)) | |
10 | 9 | anbi2d 630 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵))) |
11 | 8, 10 | bitr4id 290 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ∩ cin 3910 class class class wbr 5106 Rel wrel 5639 [cec 8649 ≀ ccoss 36680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-ec 8653 df-coss 36919 |
This theorem is referenced by: trcoss2 36992 |
Copyright terms: Public domain | W3C validator |