Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleccossin Structured version   Visualization version   GIF version

Theorem eleccossin 37341
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.)
Assertion
Ref Expression
eleccossin ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))

Proof of Theorem eleccossin
StepHypRef Expression
1 elin 3963 . . 3 (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐵 ∈ [𝐴] ≀ 𝑅𝐵 ∈ [𝐶] ≀ 𝑅))
2 relcoss 37281 . . . . 5 Rel ≀ 𝑅
3 relelec 8744 . . . . 5 (Rel ≀ 𝑅 → (𝐵 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝐵))
42, 3ax-mp 5 . . . 4 (𝐵 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝐵)
5 relelec 8744 . . . . 5 (Rel ≀ 𝑅 → (𝐵 ∈ [𝐶] ≀ 𝑅𝐶𝑅𝐵))
62, 5ax-mp 5 . . . 4 (𝐵 ∈ [𝐶] ≀ 𝑅𝐶𝑅𝐵)
74, 6anbi12i 627 . . 3 ((𝐵 ∈ [𝐴] ≀ 𝑅𝐵 ∈ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵))
81, 7bitri 274 . 2 (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵))
9 brcosscnvcoss 37292 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵𝑅𝐶𝐶𝑅𝐵))
109anbi2d 629 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐴𝑅𝐵𝐵𝑅𝐶) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵)))
118, 10bitr4id 289 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  cin 3946   class class class wbr 5147  Rel wrel 5680  [cec 8697  ccoss 37031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ec 8701  df-coss 37269
This theorem is referenced by:  trcoss2  37342
  Copyright terms: Public domain W3C validator