Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleccossin Structured version   Visualization version   GIF version

Theorem eleccossin 36528
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.)
Assertion
Ref Expression
eleccossin ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))

Proof of Theorem eleccossin
StepHypRef Expression
1 elin 3899 . . 3 (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐵 ∈ [𝐴] ≀ 𝑅𝐵 ∈ [𝐶] ≀ 𝑅))
2 relcoss 36473 . . . . 5 Rel ≀ 𝑅
3 relelec 8501 . . . . 5 (Rel ≀ 𝑅 → (𝐵 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝐵))
42, 3ax-mp 5 . . . 4 (𝐵 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝐵)
5 relelec 8501 . . . . 5 (Rel ≀ 𝑅 → (𝐵 ∈ [𝐶] ≀ 𝑅𝐶𝑅𝐵))
62, 5ax-mp 5 . . . 4 (𝐵 ∈ [𝐶] ≀ 𝑅𝐶𝑅𝐵)
74, 6anbi12i 626 . . 3 ((𝐵 ∈ [𝐴] ≀ 𝑅𝐵 ∈ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵))
81, 7bitri 274 . 2 (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵))
9 brcosscnvcoss 36484 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵𝑅𝐶𝐶𝑅𝐵))
109anbi2d 628 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐴𝑅𝐵𝐵𝑅𝐶) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵)))
118, 10bitr4id 289 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  cin 3882   class class class wbr 5070  Rel wrel 5585  [cec 8454  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458  df-coss 36464
This theorem is referenced by:  trcoss2  36529
  Copyright terms: Public domain W3C validator