![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eleccossin | Structured version Visualization version GIF version |
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.) |
Ref | Expression |
---|---|
eleccossin | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3959 | . . 3 ⊢ (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐵 ∈ [𝐴] ≀ 𝑅 ∧ 𝐵 ∈ [𝐶] ≀ 𝑅)) | |
2 | relcoss 37806 | . . . . 5 ⊢ Rel ≀ 𝑅 | |
3 | relelec 8750 | . . . . 5 ⊢ (Rel ≀ 𝑅 → (𝐵 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐵)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐵) |
5 | relelec 8750 | . . . . 5 ⊢ (Rel ≀ 𝑅 → (𝐵 ∈ [𝐶] ≀ 𝑅 ↔ 𝐶 ≀ 𝑅𝐵)) | |
6 | 2, 5 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ [𝐶] ≀ 𝑅 ↔ 𝐶 ≀ 𝑅𝐵) |
7 | 4, 6 | anbi12i 626 | . . 3 ⊢ ((𝐵 ∈ [𝐴] ≀ 𝑅 ∧ 𝐵 ∈ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵)) |
8 | 1, 7 | bitri 275 | . 2 ⊢ (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵)) |
9 | brcosscnvcoss 37817 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ 𝑅𝐶 ↔ 𝐶 ≀ 𝑅𝐵)) | |
10 | 9 | anbi2d 628 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵))) |
11 | 8, 10 | bitr4id 290 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ∩ cin 3942 class class class wbr 5141 Rel wrel 5674 [cec 8703 ≀ ccoss 37556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ec 8707 df-coss 37794 |
This theorem is referenced by: trcoss2 37867 |
Copyright terms: Public domain | W3C validator |