Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eleccossin Structured version   Visualization version   GIF version

Theorem eleccossin 34726
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.)
Assertion
Ref Expression
eleccossin ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))

Proof of Theorem eleccossin
StepHypRef Expression
1 brcosscnvcoss 34682 . . 3 ((𝐵𝑉𝐶𝑊) → (𝐵𝑅𝐶𝐶𝑅𝐵))
21anbi2d 623 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐴𝑅𝐵𝐵𝑅𝐶) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵)))
3 elin 3995 . . 3 (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐵 ∈ [𝐴] ≀ 𝑅𝐵 ∈ [𝐶] ≀ 𝑅))
4 relcoss 34671 . . . . 5 Rel ≀ 𝑅
5 relelec 8026 . . . . 5 (Rel ≀ 𝑅 → (𝐵 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝐵))
64, 5ax-mp 5 . . . 4 (𝐵 ∈ [𝐴] ≀ 𝑅𝐴𝑅𝐵)
7 relelec 8026 . . . . 5 (Rel ≀ 𝑅 → (𝐵 ∈ [𝐶] ≀ 𝑅𝐶𝑅𝐵))
84, 7ax-mp 5 . . . 4 (𝐵 ∈ [𝐶] ≀ 𝑅𝐶𝑅𝐵)
96, 8anbi12i 621 . . 3 ((𝐵 ∈ [𝐴] ≀ 𝑅𝐵 ∈ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵))
103, 9bitri 267 . 2 (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐶𝑅𝐵))
112, 10syl6rbbr 282 1 ((𝐵𝑉𝐶𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴𝑅𝐵𝐵𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wcel 2157  cin 3769   class class class wbr 4844  Rel wrel 5318  [cec 7981  ccoss 34468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-br 4845  df-opab 4907  df-xp 5319  df-rel 5320  df-cnv 5321  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-ec 7985  df-coss 34662
This theorem is referenced by:  trcoss2  34727
  Copyright terms: Public domain W3C validator