| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eleccossin | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐶 have the common element 𝐵. (Contributed by Peter Mazsa, 15-Oct-2021.) |
| Ref | Expression |
|---|---|
| eleccossin | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3949 | . . 3 ⊢ (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐵 ∈ [𝐴] ≀ 𝑅 ∧ 𝐵 ∈ [𝐶] ≀ 𝑅)) | |
| 2 | relcoss 38365 | . . . . 5 ⊢ Rel ≀ 𝑅 | |
| 3 | relelec 8775 | . . . . 5 ⊢ (Rel ≀ 𝑅 → (𝐵 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐵)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ [𝐴] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅𝐵) |
| 5 | relelec 8775 | . . . . 5 ⊢ (Rel ≀ 𝑅 → (𝐵 ∈ [𝐶] ≀ 𝑅 ↔ 𝐶 ≀ 𝑅𝐵)) | |
| 6 | 2, 5 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ [𝐶] ≀ 𝑅 ↔ 𝐶 ≀ 𝑅𝐵) |
| 7 | 4, 6 | anbi12i 628 | . . 3 ⊢ ((𝐵 ∈ [𝐴] ≀ 𝑅 ∧ 𝐵 ∈ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵)) |
| 8 | 1, 7 | bitri 275 | . 2 ⊢ (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵)) |
| 9 | brcosscnvcoss 38376 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ≀ 𝑅𝐶 ↔ 𝐶 ≀ 𝑅𝐵)) | |
| 10 | 9 | anbi2d 630 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐶 ≀ 𝑅𝐵))) |
| 11 | 8, 10 | bitr4id 290 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∈ ([𝐴] ≀ 𝑅 ∩ [𝐶] ≀ 𝑅) ↔ (𝐴 ≀ 𝑅𝐵 ∧ 𝐵 ≀ 𝑅𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∩ cin 3932 class class class wbr 5125 Rel wrel 5672 [cec 8726 ≀ ccoss 38123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ec 8730 df-coss 38353 |
| This theorem is referenced by: trcoss2 38426 |
| Copyright terms: Public domain | W3C validator |