Proof of Theorem cocossss
Step | Hyp | Ref
| Expression |
1 | | relcoss 36546 |
. . 3
⊢ Rel
≀ ≀ 𝑅 |
2 | | ssrel3 36434 |
. . 3
⊢ (Rel
≀ ≀ 𝑅 → (
≀ ≀ 𝑅 ⊆
𝑆 ↔ ∀𝑥∀𝑧(𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧))) |
3 | 1, 2 | ax-mp 5 |
. 2
⊢ ( ≀
≀ 𝑅 ⊆ 𝑆 ↔ ∀𝑥∀𝑧(𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧)) |
4 | | brcoss 36554 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑦 ≀ 𝑅𝑥 ∧ 𝑦 ≀ 𝑅𝑧))) |
5 | 4 | el2v 3440 |
. . . . . . . 8
⊢ (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑦 ≀ 𝑅𝑥 ∧ 𝑦 ≀ 𝑅𝑧)) |
6 | | brcosscnvcoss 36557 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ≀ 𝑅𝑥 ↔ 𝑥 ≀ 𝑅𝑦)) |
7 | 6 | el2v 3440 |
. . . . . . . . . 10
⊢ (𝑦 ≀ 𝑅𝑥 ↔ 𝑥 ≀ 𝑅𝑦) |
8 | 7 | anbi1i 624 |
. . . . . . . . 9
⊢ ((𝑦 ≀ 𝑅𝑥 ∧ 𝑦 ≀ 𝑅𝑧) ↔ (𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧)) |
9 | 8 | exbii 1850 |
. . . . . . . 8
⊢
(∃𝑦(𝑦 ≀ 𝑅𝑥 ∧ 𝑦 ≀ 𝑅𝑧) ↔ ∃𝑦(𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧)) |
10 | 5, 9 | bitri 274 |
. . . . . . 7
⊢ (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧)) |
11 | 10 | imbi1i 350 |
. . . . . 6
⊢ ((𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧) ↔ (∃𝑦(𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
12 | | 19.23v 1945 |
. . . . . 6
⊢
(∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧) ↔ (∃𝑦(𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
13 | 11, 12 | bitr4i 277 |
. . . . 5
⊢ ((𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧) ↔ ∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
14 | 13 | albii 1822 |
. . . 4
⊢
(∀𝑧(𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧) ↔ ∀𝑧∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
15 | | alcom 2156 |
. . . 4
⊢
(∀𝑧∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧) ↔ ∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
16 | 14, 15 | bitri 274 |
. . 3
⊢
(∀𝑧(𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧) ↔ ∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
17 | 16 | albii 1822 |
. 2
⊢
(∀𝑥∀𝑧(𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
18 | 3, 17 | bitri 274 |
1
⊢ ( ≀
≀ 𝑅 ⊆ 𝑆 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |