Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocossss Structured version   Visualization version   GIF version

Theorem cocossss 38479
Description: Two ways of saying that cosets by cosets by 𝑅 is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021.)
Assertion
Ref Expression
cocossss ( ≀ ≀ 𝑅𝑆 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem cocossss
StepHypRef Expression
1 relcoss 38466 . . 3 Rel ≀ ≀ 𝑅
2 ssrel3 5726 . . 3 (Rel ≀ ≀ 𝑅 → ( ≀ ≀ 𝑅𝑆 ↔ ∀𝑥𝑧(𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧)))
31, 2ax-mp 5 . 2 ( ≀ ≀ 𝑅𝑆 ↔ ∀𝑥𝑧(𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧))
4 brcoss 38474 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑦𝑅𝑥𝑦𝑅𝑧)))
54el2v 3443 . . . . . . . 8 (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑦𝑅𝑥𝑦𝑅𝑧))
6 brcosscnvcoss 38477 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝑅𝑥𝑥𝑅𝑦))
76el2v 3443 . . . . . . . . . 10 (𝑦𝑅𝑥𝑥𝑅𝑦)
87anbi1i 624 . . . . . . . . 9 ((𝑦𝑅𝑥𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧))
98exbii 1849 . . . . . . . 8 (∃𝑦(𝑦𝑅𝑥𝑦𝑅𝑧) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧))
105, 9bitri 275 . . . . . . 7 (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧))
1110imbi1i 349 . . . . . 6 ((𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
12 19.23v 1943 . . . . . 6 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
1311, 12bitr4i 278 . . . . 5 ((𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧) ↔ ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
1413albii 1820 . . . 4 (∀𝑧(𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧) ↔ ∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
15 alcom 2162 . . . 4 (∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
1614, 15bitri 275 . . 3 (∀𝑧(𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
1716albii 1820 . 2 (∀𝑥𝑧(𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
183, 17bitri 275 1 ( ≀ ≀ 𝑅𝑆 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  Vcvv 3436  wss 3902   class class class wbr 5091  Rel wrel 5621  ccoss 38221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-coss 38454
This theorem is referenced by:  eqvrelcoss2  38662
  Copyright terms: Public domain W3C validator