Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocossss Structured version   Visualization version   GIF version

Theorem cocossss 35675
Description: Two ways of saying that cosets by cosets by 𝑅 is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021.)
Assertion
Ref Expression
cocossss ( ≀ ≀ 𝑅𝑆 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem cocossss
StepHypRef Expression
1 relcoss 35662 . . 3 Rel ≀ ≀ 𝑅
2 ssrel3 35550 . . 3 (Rel ≀ ≀ 𝑅 → ( ≀ ≀ 𝑅𝑆 ↔ ∀𝑥𝑧(𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧)))
31, 2ax-mp 5 . 2 ( ≀ ≀ 𝑅𝑆 ↔ ∀𝑥𝑧(𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧))
4 brcoss 35670 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑦𝑅𝑥𝑦𝑅𝑧)))
54el2v 3501 . . . . . . . 8 (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑦𝑅𝑥𝑦𝑅𝑧))
6 brcosscnvcoss 35673 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝑅𝑥𝑥𝑅𝑦))
76el2v 3501 . . . . . . . . . 10 (𝑦𝑅𝑥𝑥𝑅𝑦)
87anbi1i 625 . . . . . . . . 9 ((𝑦𝑅𝑥𝑦𝑅𝑧) ↔ (𝑥𝑅𝑦𝑦𝑅𝑧))
98exbii 1844 . . . . . . . 8 (∃𝑦(𝑦𝑅𝑥𝑦𝑅𝑧) ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧))
105, 9bitri 277 . . . . . . 7 (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧))
1110imbi1i 352 . . . . . 6 ((𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
12 19.23v 1939 . . . . . 6 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧) ↔ (∃𝑦(𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
1311, 12bitr4i 280 . . . . 5 ((𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧) ↔ ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
1413albii 1816 . . . 4 (∀𝑧(𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧) ↔ ∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
15 alcom 2159 . . . 4 (∀𝑧𝑦((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
1614, 15bitri 277 . . 3 (∀𝑧(𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧) ↔ ∀𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
1716albii 1816 . 2 (∀𝑥𝑧(𝑥 ≀ ≀ 𝑅𝑧𝑥𝑆𝑧) ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
183, 17bitri 277 1 ( ≀ ≀ 𝑅𝑆 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑆𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1531  wex 1776  Vcvv 3494  wss 3935   class class class wbr 5058  Rel wrel 5554  ccoss 35447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-coss 35653
This theorem is referenced by:  eqvrelcoss2  35848
  Copyright terms: Public domain W3C validator