Proof of Theorem cocossss
| Step | Hyp | Ref
| Expression |
| 1 | | relcoss 38425 |
. . 3
⊢ Rel
≀ ≀ 𝑅 |
| 2 | | ssrel3 5795 |
. . 3
⊢ (Rel
≀ ≀ 𝑅 → (
≀ ≀ 𝑅 ⊆
𝑆 ↔ ∀𝑥∀𝑧(𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧))) |
| 3 | 1, 2 | ax-mp 5 |
. 2
⊢ ( ≀
≀ 𝑅 ⊆ 𝑆 ↔ ∀𝑥∀𝑧(𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧)) |
| 4 | | brcoss 38433 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑦 ≀ 𝑅𝑥 ∧ 𝑦 ≀ 𝑅𝑧))) |
| 5 | 4 | el2v 3486 |
. . . . . . . 8
⊢ (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑦 ≀ 𝑅𝑥 ∧ 𝑦 ≀ 𝑅𝑧)) |
| 6 | | brcosscnvcoss 38436 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ≀ 𝑅𝑥 ↔ 𝑥 ≀ 𝑅𝑦)) |
| 7 | 6 | el2v 3486 |
. . . . . . . . . 10
⊢ (𝑦 ≀ 𝑅𝑥 ↔ 𝑥 ≀ 𝑅𝑦) |
| 8 | 7 | anbi1i 624 |
. . . . . . . . 9
⊢ ((𝑦 ≀ 𝑅𝑥 ∧ 𝑦 ≀ 𝑅𝑧) ↔ (𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧)) |
| 9 | 8 | exbii 1847 |
. . . . . . . 8
⊢
(∃𝑦(𝑦 ≀ 𝑅𝑥 ∧ 𝑦 ≀ 𝑅𝑧) ↔ ∃𝑦(𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧)) |
| 10 | 5, 9 | bitri 275 |
. . . . . . 7
⊢ (𝑥 ≀ ≀ 𝑅𝑧 ↔ ∃𝑦(𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧)) |
| 11 | 10 | imbi1i 349 |
. . . . . 6
⊢ ((𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧) ↔ (∃𝑦(𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
| 12 | | 19.23v 1941 |
. . . . . 6
⊢
(∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧) ↔ (∃𝑦(𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
| 13 | 11, 12 | bitr4i 278 |
. . . . 5
⊢ ((𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧) ↔ ∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
| 14 | 13 | albii 1818 |
. . . 4
⊢
(∀𝑧(𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧) ↔ ∀𝑧∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
| 15 | | alcom 2158 |
. . . 4
⊢
(∀𝑧∀𝑦((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧) ↔ ∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
| 16 | 14, 15 | bitri 275 |
. . 3
⊢
(∀𝑧(𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧) ↔ ∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
| 17 | 16 | albii 1818 |
. 2
⊢
(∀𝑥∀𝑧(𝑥 ≀ ≀ 𝑅𝑧 → 𝑥𝑆𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |
| 18 | 3, 17 | bitri 275 |
1
⊢ ( ≀
≀ 𝑅 ⊆ 𝑆 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) |