Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvcosseq Structured version   Visualization version   GIF version

Theorem cnvcosseq 36487
Description: The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.)
Assertion
Ref Expression
cnvcosseq 𝑅 = ≀ 𝑅

Proof of Theorem cnvcosseq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brcosscnvcoss 36484 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑅𝑦𝑦𝑅𝑥))
21el2v 3430 . . . . 5 (𝑥𝑅𝑦𝑦𝑅𝑥)
32biimpi 215 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
43gen2 1800 . . 3 𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)
5 cnvsym 6008 . . 3 (𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
64, 5mpbir 230 . 2 𝑅 ⊆ ≀ 𝑅
7 relcoss 36473 . . 3 Rel ≀ 𝑅
8 relcnveq 36384 . . 3 (Rel ≀ 𝑅 → (𝑅 ⊆ ≀ 𝑅𝑅 = ≀ 𝑅))
97, 8ax-mp 5 . 2 (𝑅 ⊆ ≀ 𝑅𝑅 = ≀ 𝑅)
106, 9mpbi 229 1 𝑅 = ≀ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  Vcvv 3422  wss 3883   class class class wbr 5070  ccnv 5579  Rel wrel 5585  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-coss 36464
This theorem is referenced by:  br2coss  36488
  Copyright terms: Public domain W3C validator