Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvcosseq | Structured version Visualization version GIF version |
Description: The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.) |
Ref | Expression |
---|---|
cnvcosseq | ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcosscnvcoss 36484 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ 𝑅𝑦 ↔ 𝑦 ≀ 𝑅𝑥)) | |
2 | 1 | el2v 3430 | . . . . 5 ⊢ (𝑥 ≀ 𝑅𝑦 ↔ 𝑦 ≀ 𝑅𝑥) |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
4 | 3 | gen2 1800 | . . 3 ⊢ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
5 | cnvsym 6008 | . . 3 ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥)) | |
6 | 4, 5 | mpbir 230 | . 2 ⊢ ◡ ≀ 𝑅 ⊆ ≀ 𝑅 |
7 | relcoss 36473 | . . 3 ⊢ Rel ≀ 𝑅 | |
8 | relcnveq 36384 | . . 3 ⊢ (Rel ≀ 𝑅 → (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ◡ ≀ 𝑅 = ≀ 𝑅)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ◡ ≀ 𝑅 = ≀ 𝑅) |
10 | 6, 9 | mpbi 229 | 1 ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ◡ccnv 5579 Rel wrel 5585 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-coss 36464 |
This theorem is referenced by: br2coss 36488 |
Copyright terms: Public domain | W3C validator |