| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvcosseq | Structured version Visualization version GIF version | ||
| Description: The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.) |
| Ref | Expression |
|---|---|
| cnvcosseq | ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcosscnvcoss 38419 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ 𝑅𝑦 ↔ 𝑦 ≀ 𝑅𝑥)) | |
| 2 | 1 | el2v 3462 | . . . . 5 ⊢ (𝑥 ≀ 𝑅𝑦 ↔ 𝑦 ≀ 𝑅𝑥) |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
| 4 | 3 | gen2 1796 | . . 3 ⊢ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
| 5 | cnvsym 6093 | . . 3 ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥)) | |
| 6 | 4, 5 | mpbir 231 | . 2 ⊢ ◡ ≀ 𝑅 ⊆ ≀ 𝑅 |
| 7 | relcoss 38408 | . . 3 ⊢ Rel ≀ 𝑅 | |
| 8 | relcnveq 38307 | . . 3 ⊢ (Rel ≀ 𝑅 → (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ◡ ≀ 𝑅 = ≀ 𝑅)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ◡ ≀ 𝑅 = ≀ 𝑅) |
| 10 | 6, 9 | mpbi 230 | 1 ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Vcvv 3455 ⊆ wss 3922 class class class wbr 5115 ◡ccnv 5645 Rel wrel 5651 ≀ ccoss 38166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-xp 5652 df-rel 5653 df-cnv 5654 df-coss 38396 |
| This theorem is referenced by: br2coss 38423 |
| Copyright terms: Public domain | W3C validator |