![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvcosseq | Structured version Visualization version GIF version |
Description: The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.) |
Ref | Expression |
---|---|
cnvcosseq | ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcosscnvcoss 35124 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ 𝑅𝑦 ↔ 𝑦 ≀ 𝑅𝑥)) | |
2 | 1 | el2v 3416 | . . . . 5 ⊢ (𝑥 ≀ 𝑅𝑦 ↔ 𝑦 ≀ 𝑅𝑥) |
3 | 2 | biimpi 208 | . . . 4 ⊢ (𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
4 | 3 | gen2 1759 | . . 3 ⊢ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
5 | cnvsym 5808 | . . 3 ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥)) | |
6 | 4, 5 | mpbir 223 | . 2 ⊢ ◡ ≀ 𝑅 ⊆ ≀ 𝑅 |
7 | relcoss 35113 | . . 3 ⊢ Rel ≀ 𝑅 | |
8 | relcnveq 35023 | . . 3 ⊢ (Rel ≀ 𝑅 → (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ◡ ≀ 𝑅 = ≀ 𝑅)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ◡ ≀ 𝑅 = ≀ 𝑅) |
10 | 6, 9 | mpbi 222 | 1 ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1505 = wceq 1507 Vcvv 3409 ⊆ wss 3823 class class class wbr 4923 ◡ccnv 5400 Rel wrel 5406 ≀ ccoss 34897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rab 3091 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 df-opab 4986 df-xp 5407 df-rel 5408 df-cnv 5409 df-coss 35104 |
This theorem is referenced by: br2coss 35128 |
Copyright terms: Public domain | W3C validator |