Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvcosseq Structured version   Visualization version   GIF version

Theorem cnvcosseq 38379
Description: The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.)
Assertion
Ref Expression
cnvcosseq 𝑅 = ≀ 𝑅

Proof of Theorem cnvcosseq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brcosscnvcoss 38376 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑅𝑦𝑦𝑅𝑥))
21el2v 3471 . . . . 5 (𝑥𝑅𝑦𝑦𝑅𝑥)
32biimpi 216 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
43gen2 1795 . . 3 𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)
5 cnvsym 6114 . . 3 (𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
64, 5mpbir 231 . 2 𝑅 ⊆ ≀ 𝑅
7 relcoss 38365 . . 3 Rel ≀ 𝑅
8 relcnveq 38264 . . 3 (Rel ≀ 𝑅 → (𝑅 ⊆ ≀ 𝑅𝑅 = ≀ 𝑅))
97, 8ax-mp 5 . 2 (𝑅 ⊆ ≀ 𝑅𝑅 = ≀ 𝑅)
106, 9mpbi 230 1 𝑅 = ≀ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537   = wceq 1539  Vcvv 3464  wss 3933   class class class wbr 5125  ccnv 5666  Rel wrel 5672  ccoss 38123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-xp 5673  df-rel 5674  df-cnv 5675  df-coss 38353
This theorem is referenced by:  br2coss  38380
  Copyright terms: Public domain W3C validator