![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvcosseq | Structured version Visualization version GIF version |
Description: The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.) |
Ref | Expression |
---|---|
cnvcosseq | ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcosscnvcoss 38428 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ 𝑅𝑦 ↔ 𝑦 ≀ 𝑅𝑥)) | |
2 | 1 | el2v 3486 | . . . . 5 ⊢ (𝑥 ≀ 𝑅𝑦 ↔ 𝑦 ≀ 𝑅𝑥) |
3 | 2 | biimpi 216 | . . . 4 ⊢ (𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
4 | 3 | gen2 1794 | . . 3 ⊢ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
5 | cnvsym 6137 | . . 3 ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥)) | |
6 | 4, 5 | mpbir 231 | . 2 ⊢ ◡ ≀ 𝑅 ⊆ ≀ 𝑅 |
7 | relcoss 38417 | . . 3 ⊢ Rel ≀ 𝑅 | |
8 | relcnveq 38316 | . . 3 ⊢ (Rel ≀ 𝑅 → (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ◡ ≀ 𝑅 = ≀ 𝑅)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (◡ ≀ 𝑅 ⊆ ≀ 𝑅 ↔ ◡ ≀ 𝑅 = ≀ 𝑅) |
10 | 6, 9 | mpbi 230 | 1 ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1536 = wceq 1538 Vcvv 3479 ⊆ wss 3964 class class class wbr 5149 ◡ccnv 5689 Rel wrel 5695 ≀ ccoss 38174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5150 df-opab 5212 df-xp 5696 df-rel 5697 df-cnv 5698 df-coss 38405 |
This theorem is referenced by: br2coss 38432 |
Copyright terms: Public domain | W3C validator |