Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvcosseq Structured version   Visualization version   GIF version

Theorem cnvcosseq 38431
Description: The converse of cosets by 𝑅 are cosets by 𝑅. (Contributed by Peter Mazsa, 3-May-2019.)
Assertion
Ref Expression
cnvcosseq 𝑅 = ≀ 𝑅

Proof of Theorem cnvcosseq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brcosscnvcoss 38428 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑅𝑦𝑦𝑅𝑥))
21el2v 3486 . . . . 5 (𝑥𝑅𝑦𝑦𝑅𝑥)
32biimpi 216 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
43gen2 1794 . . 3 𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)
5 cnvsym 6137 . . 3 (𝑅 ⊆ ≀ 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
64, 5mpbir 231 . 2 𝑅 ⊆ ≀ 𝑅
7 relcoss 38417 . . 3 Rel ≀ 𝑅
8 relcnveq 38316 . . 3 (Rel ≀ 𝑅 → (𝑅 ⊆ ≀ 𝑅𝑅 = ≀ 𝑅))
97, 8ax-mp 5 . 2 (𝑅 ⊆ ≀ 𝑅𝑅 = ≀ 𝑅)
106, 9mpbi 230 1 𝑅 = ≀ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1536   = wceq 1538  Vcvv 3479  wss 3964   class class class wbr 5149  ccnv 5689  Rel wrel 5695  ccoss 38174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5150  df-opab 5212  df-xp 5696  df-rel 5697  df-cnv 5698  df-coss 38405
This theorem is referenced by:  br2coss  38432
  Copyright terms: Public domain W3C validator