Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvrefrelcoss2 Structured version   Visualization version   GIF version

Theorem cnvrefrelcoss2 38061
Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.)
Assertion
Ref Expression
cnvrefrelcoss2 ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I )

Proof of Theorem cnvrefrelcoss2
StepHypRef Expression
1 relcoss 37947 . . 3 Rel ≀ 𝑅
2 dfcnvrefrel2 38054 . . 3 ( CnvRefRel ≀ 𝑅 ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ Rel ≀ 𝑅))
31, 2mpbiran2 708 . 2 ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
4 cossssid 37991 . 2 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
53, 4bitr4i 277 1 ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I )
Colors of variables: wff setvar class
Syntax hints:  wb 205  cin 3940  wss 3941   I cid 5570   × cxp 5671  dom cdm 5673  ran crn 5674  Rel wrel 5678  ccoss 37701   CnvRefRel wcnvrefrel 37710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-coss 37935  df-cnvrefrel 38051
This theorem is referenced by:  dffunALTV2  38212  funALTVfun  38222  dfdisjALTV2  38238
  Copyright terms: Public domain W3C validator