| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvrefrelcoss2 | Structured version Visualization version GIF version | ||
| Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.) |
| Ref | Expression |
|---|---|
| cnvrefrelcoss2 | ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcoss 38441 | . . 3 ⊢ Rel ≀ 𝑅 | |
| 2 | dfcnvrefrel2 38548 | . . 3 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ Rel ≀ 𝑅)) | |
| 3 | 1, 2 | mpbiran2 710 | . 2 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) |
| 4 | cossssid 38485 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∩ cin 3925 ⊆ wss 3926 I cid 5547 × cxp 5652 dom cdm 5654 ran crn 5655 Rel wrel 5659 ≀ ccoss 38199 CnvRefRel wcnvrefrel 38208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-coss 38429 df-cnvrefrel 38545 |
| This theorem is referenced by: dffunALTV2 38706 funALTVfun 38716 dfdisjALTV2 38732 |
| Copyright terms: Public domain | W3C validator |