Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvrefrelcoss2 | Structured version Visualization version GIF version |
Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
cnvrefrelcoss2 | ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcoss 36525 | . . 3 ⊢ Rel ≀ 𝑅 | |
2 | dfcnvrefrel2 36625 | . . 3 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ Rel ≀ 𝑅)) | |
3 | 1, 2 | mpbiran2 706 | . 2 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) |
4 | cossssid 36564 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | |
5 | 3, 4 | bitr4i 277 | 1 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∩ cin 3890 ⊆ wss 3891 I cid 5487 × cxp 5586 dom cdm 5588 ran crn 5589 Rel wrel 5593 ≀ ccoss 36312 CnvRefRel wcnvrefrel 36321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-coss 36516 df-cnvrefrel 36622 |
This theorem is referenced by: dffunALTV2 36778 funALTVfun 36788 dfdisjALTV2 36804 |
Copyright terms: Public domain | W3C validator |