Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvrefrelcoss2 Structured version   Visualization version   GIF version

Theorem cnvrefrelcoss2 36630
Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.)
Assertion
Ref Expression
cnvrefrelcoss2 ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I )

Proof of Theorem cnvrefrelcoss2
StepHypRef Expression
1 relcoss 36525 . . 3 Rel ≀ 𝑅
2 dfcnvrefrel2 36625 . . 3 ( CnvRefRel ≀ 𝑅 ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ Rel ≀ 𝑅))
31, 2mpbiran2 706 . 2 ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
4 cossssid 36564 . 2 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)))
53, 4bitr4i 277 1 ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I )
Colors of variables: wff setvar class
Syntax hints:  wb 205  cin 3890  wss 3891   I cid 5487   × cxp 5586  dom cdm 5588  ran crn 5589  Rel wrel 5593  ccoss 36312   CnvRefRel wcnvrefrel 36321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-coss 36516  df-cnvrefrel 36622
This theorem is referenced by:  dffunALTV2  36778  funALTVfun  36788  dfdisjALTV2  36804
  Copyright terms: Public domain W3C validator