![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvrefrelcoss2 | Structured version Visualization version GIF version |
Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
cnvrefrelcoss2 | ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcoss 38405 | . . 3 ⊢ Rel ≀ 𝑅 | |
2 | dfcnvrefrel2 38512 | . . 3 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ Rel ≀ 𝑅)) | |
3 | 1, 2 | mpbiran2 710 | . 2 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) |
4 | cossssid 38449 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | |
5 | 3, 4 | bitr4i 278 | 1 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∩ cin 3962 ⊆ wss 3963 I cid 5582 × cxp 5687 dom cdm 5689 ran crn 5690 Rel wrel 5694 ≀ ccoss 38162 CnvRefRel wcnvrefrel 38171 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-coss 38393 df-cnvrefrel 38509 |
This theorem is referenced by: dffunALTV2 38670 funALTVfun 38680 dfdisjALTV2 38696 |
Copyright terms: Public domain | W3C validator |