Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvrefrelcoss2 | Structured version Visualization version GIF version |
Description: Necessary and sufficient condition for a coset relation to be a converse reflexive relation. (Contributed by Peter Mazsa, 27-Jul-2021.) |
Ref | Expression |
---|---|
cnvrefrelcoss2 | ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcoss 36588 | . . 3 ⊢ Rel ≀ 𝑅 | |
2 | dfcnvrefrel2 36688 | . . 3 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ( ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅)) ∧ Rel ≀ 𝑅)) | |
3 | 1, 2 | mpbiran2 708 | . 2 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) |
4 | cossssid 36627 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ ( I ∩ (dom ≀ 𝑅 × ran ≀ 𝑅))) | |
5 | 3, 4 | bitr4i 278 | 1 ⊢ ( CnvRefRel ≀ 𝑅 ↔ ≀ 𝑅 ⊆ I ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∩ cin 3891 ⊆ wss 3892 I cid 5499 × cxp 5598 dom cdm 5600 ran crn 5601 Rel wrel 5605 ≀ ccoss 36377 CnvRefRel wcnvrefrel 36386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-coss 36579 df-cnvrefrel 36685 |
This theorem is referenced by: dffunALTV2 36841 funALTVfun 36851 dfdisjALTV2 36867 |
Copyright terms: Public domain | W3C validator |