Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrelcoss3 Structured version   Visualization version   GIF version

Theorem symrelcoss3 38407
Description: The class of cosets by 𝑅 is symmetric, see dfsymrel3 38492. (Contributed by Peter Mazsa, 28-Mar-2019.) (Revised by Peter Mazsa, 17-Sep-2021.)
Assertion
Ref Expression
symrelcoss3 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)

Proof of Theorem symrelcoss3
StepHypRef Expression
1 brcosscnvcoss 38376 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑅𝑦𝑦𝑅𝑥))
21el2v 3471 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
32biimpi 216 . . 3 (𝑥𝑅𝑦𝑦𝑅𝑥)
43gen2 1795 . 2 𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)
5 relcoss 38365 . 2 Rel ≀ 𝑅
64, 5pm3.2i 470 1 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537  Vcvv 3464   class class class wbr 5125  Rel wrel 5672  ccoss 38123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-xp 5673  df-rel 5674  df-coss 38353
This theorem is referenced by:  symrelcoss2  38408  eqvrelcoss3  38560
  Copyright terms: Public domain W3C validator