Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrelcoss3 Structured version   Visualization version   GIF version

Theorem symrelcoss3 38421
Description: The class of cosets by 𝑅 is symmetric, see dfsymrel3 38506. (Contributed by Peter Mazsa, 28-Mar-2019.) (Revised by Peter Mazsa, 17-Sep-2021.)
Assertion
Ref Expression
symrelcoss3 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)

Proof of Theorem symrelcoss3
StepHypRef Expression
1 brcosscnvcoss 38390 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑅𝑦𝑦𝑅𝑥))
21el2v 3495 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
32biimpi 216 . . 3 (𝑥𝑅𝑦𝑦𝑅𝑥)
43gen2 1794 . 2 𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)
5 relcoss 38379 . 2 Rel ≀ 𝑅
64, 5pm3.2i 470 1 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  Vcvv 3488   class class class wbr 5166  Rel wrel 5705  ccoss 38135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-coss 38367
This theorem is referenced by:  symrelcoss2  38422  eqvrelcoss3  38574
  Copyright terms: Public domain W3C validator