Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symrelcoss3 Structured version   Visualization version   GIF version

Theorem symrelcoss3 38447
Description: The class of cosets by 𝑅 is symmetric, see dfsymrel3 38532. (Contributed by Peter Mazsa, 28-Mar-2019.) (Revised by Peter Mazsa, 17-Sep-2021.)
Assertion
Ref Expression
symrelcoss3 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)

Proof of Theorem symrelcoss3
StepHypRef Expression
1 brcosscnvcoss 38416 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑅𝑦𝑦𝑅𝑥))
21el2v 3485 . . . 4 (𝑥𝑅𝑦𝑦𝑅𝑥)
32biimpi 216 . . 3 (𝑥𝑅𝑦𝑦𝑅𝑥)
43gen2 1793 . 2 𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)
5 relcoss 38405 . 2 Rel ≀ 𝑅
64, 5pm3.2i 470 1 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ Rel ≀ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  Vcvv 3478   class class class wbr 5148  Rel wrel 5694  ccoss 38162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-coss 38393
This theorem is referenced by:  symrelcoss2  38448  eqvrelcoss3  38600
  Copyright terms: Public domain W3C validator