| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > symrelcoss3 | Structured version Visualization version GIF version | ||
| Description: The class of cosets by 𝑅 is symmetric, see dfsymrel3 38492. (Contributed by Peter Mazsa, 28-Mar-2019.) (Revised by Peter Mazsa, 17-Sep-2021.) |
| Ref | Expression |
|---|---|
| symrelcoss3 | ⊢ (∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ Rel ≀ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcosscnvcoss 38376 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ 𝑅𝑦 ↔ 𝑦 ≀ 𝑅𝑥)) | |
| 2 | 1 | el2v 3471 | . . . 4 ⊢ (𝑥 ≀ 𝑅𝑦 ↔ 𝑦 ≀ 𝑅𝑥) |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
| 4 | 3 | gen2 1795 | . 2 ⊢ ∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) |
| 5 | relcoss 38365 | . 2 ⊢ Rel ≀ 𝑅 | |
| 6 | 4, 5 | pm3.2i 470 | 1 ⊢ (∀𝑥∀𝑦(𝑥 ≀ 𝑅𝑦 → 𝑦 ≀ 𝑅𝑥) ∧ Rel ≀ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 Vcvv 3464 class class class wbr 5125 Rel wrel 5672 ≀ ccoss 38123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-coss 38353 |
| This theorem is referenced by: symrelcoss2 38408 eqvrelcoss3 38560 |
| Copyright terms: Public domain | W3C validator |