| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cosscnvxrn | Structured version Visualization version GIF version | ||
| Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| Ref | Expression |
|---|---|
| 1cosscnvxrn | ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1cosscnvxrn 38497 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦 ↔ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦))) | |
| 2 | 1 | el2v 3471 | . . . 4 ⊢ (𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦 ↔ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)) |
| 3 | 2 | opabbii 5191 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)} |
| 4 | inopab 5813 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐵𝑦}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)} | |
| 5 | 3, 4 | eqtr4i 2762 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} = ({〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐵𝑦}) |
| 6 | relcoss 38446 | . . 3 ⊢ Rel ≀ ◡(𝐴 ⋉ 𝐵) | |
| 7 | dfrel4v 6184 | . . 3 ⊢ (Rel ≀ ◡(𝐴 ⋉ 𝐵) ↔ ≀ ◡(𝐴 ⋉ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦}) | |
| 8 | 6, 7 | mpbi 230 | . 2 ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} |
| 9 | relcoss 38446 | . . . 4 ⊢ Rel ≀ ◡𝐴 | |
| 10 | dfrel4v 6184 | . . . 4 ⊢ (Rel ≀ ◡𝐴 ↔ ≀ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐴𝑦}) | |
| 11 | 9, 10 | mpbi 230 | . . 3 ⊢ ≀ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐴𝑦} |
| 12 | relcoss 38446 | . . . 4 ⊢ Rel ≀ ◡𝐵 | |
| 13 | dfrel4v 6184 | . . . 4 ⊢ (Rel ≀ ◡𝐵 ↔ ≀ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐵𝑦}) | |
| 14 | 12, 13 | mpbi 230 | . . 3 ⊢ ≀ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐵𝑦} |
| 15 | 11, 14 | ineq12i 4198 | . 2 ⊢ ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐵𝑦}) |
| 16 | 5, 8, 15 | 3eqtr4i 2769 | 1 ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 Vcvv 3464 ∩ cin 3930 class class class wbr 5124 {copab 5186 ◡ccnv 5658 Rel wrel 5664 ⋉ cxrn 38203 ≀ ccoss 38204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-1st 7993 df-2nd 7994 df-ec 8726 df-xrn 38394 df-coss 38434 |
| This theorem is referenced by: disjxrn 38769 |
| Copyright terms: Public domain | W3C validator |