Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cosscnvxrn Structured version   Visualization version   GIF version

Theorem 1cosscnvxrn 37333
Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
1cosscnvxrn (𝐴𝐵) = ( ≀ 𝐴 ∩ ≀ 𝐵)

Proof of Theorem 1cosscnvxrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 br1cosscnvxrn 37332 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵𝑦)))
21el2v 3482 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵𝑦))
32opabbii 5214 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥𝐵𝑦)}
4 inopab 5827 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥𝐵𝑦)}
53, 4eqtr4i 2763 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦} = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
6 relcoss 37281 . . 3 Rel ≀ (𝐴𝐵)
7 dfrel4v 6186 . . 3 (Rel ≀ (𝐴𝐵) ↔ ≀ (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦})
86, 7mpbi 229 . 2 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦}
9 relcoss 37281 . . . 4 Rel ≀ 𝐴
10 dfrel4v 6186 . . . 4 (Rel ≀ 𝐴 ↔ ≀ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦})
119, 10mpbi 229 . . 3 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦}
12 relcoss 37281 . . . 4 Rel ≀ 𝐵
13 dfrel4v 6186 . . . 4 (Rel ≀ 𝐵 ↔ ≀ 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
1412, 13mpbi 229 . . 3 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦}
1511, 14ineq12i 4209 . 2 ( ≀ 𝐴 ∩ ≀ 𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
165, 8, 153eqtr4i 2770 1 (𝐴𝐵) = ( ≀ 𝐴 ∩ ≀ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  Vcvv 3474  cin 3946   class class class wbr 5147  {copab 5209  ccnv 5674  Rel wrel 5680  cxrn 37030  ccoss 37031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-1st 7971  df-2nd 7972  df-ec 8701  df-xrn 37229  df-coss 37269
This theorem is referenced by:  disjxrn  37604
  Copyright terms: Public domain W3C validator