Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cosscnvxrn Structured version   Visualization version   GIF version

Theorem 1cosscnvxrn 38466
Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
1cosscnvxrn (𝐴𝐵) = ( ≀ 𝐴 ∩ ≀ 𝐵)

Proof of Theorem 1cosscnvxrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 br1cosscnvxrn 38465 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵𝑦)))
21el2v 3454 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵𝑦))
32opabbii 5174 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥𝐵𝑦)}
4 inopab 5792 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥𝐵𝑦)}
53, 4eqtr4i 2755 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦} = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
6 relcoss 38414 . . 3 Rel ≀ (𝐴𝐵)
7 dfrel4v 6163 . . 3 (Rel ≀ (𝐴𝐵) ↔ ≀ (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦})
86, 7mpbi 230 . 2 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦}
9 relcoss 38414 . . . 4 Rel ≀ 𝐴
10 dfrel4v 6163 . . . 4 (Rel ≀ 𝐴 ↔ ≀ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦})
119, 10mpbi 230 . . 3 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦}
12 relcoss 38414 . . . 4 Rel ≀ 𝐵
13 dfrel4v 6163 . . . 4 (Rel ≀ 𝐵 ↔ ≀ 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
1412, 13mpbi 230 . . 3 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦}
1511, 14ineq12i 4181 . 2 ( ≀ 𝐴 ∩ ≀ 𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
165, 8, 153eqtr4i 2762 1 (𝐴𝐵) = ( ≀ 𝐴 ∩ ≀ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  Vcvv 3447  cin 3913   class class class wbr 5107  {copab 5169  ccnv 5637  Rel wrel 5643  cxrn 38168  ccoss 38169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-ec 8673  df-xrn 38353  df-coss 38402
This theorem is referenced by:  disjxrn  38738
  Copyright terms: Public domain W3C validator