![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cosscnvxrn | Structured version Visualization version GIF version |
Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
Ref | Expression |
---|---|
1cosscnvxrn | ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cosscnvxrn 38001 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦 ↔ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦))) | |
2 | 1 | el2v 3471 | . . . 4 ⊢ (𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦 ↔ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)) |
3 | 2 | opabbii 5210 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)} |
4 | inopab 5825 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)} | |
5 | 3, 4 | eqtr4i 2756 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} = ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) |
6 | relcoss 37950 | . . 3 ⊢ Rel ≀ ◡(𝐴 ⋉ 𝐵) | |
7 | dfrel4v 6189 | . . 3 ⊢ (Rel ≀ ◡(𝐴 ⋉ 𝐵) ↔ ≀ ◡(𝐴 ⋉ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦}) | |
8 | 6, 7 | mpbi 229 | . 2 ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} |
9 | relcoss 37950 | . . . 4 ⊢ Rel ≀ ◡𝐴 | |
10 | dfrel4v 6189 | . . . 4 ⊢ (Rel ≀ ◡𝐴 ↔ ≀ ◡𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦}) | |
11 | 9, 10 | mpbi 229 | . . 3 ⊢ ≀ ◡𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} |
12 | relcoss 37950 | . . . 4 ⊢ Rel ≀ ◡𝐵 | |
13 | dfrel4v 6189 | . . . 4 ⊢ (Rel ≀ ◡𝐵 ↔ ≀ ◡𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) | |
14 | 12, 13 | mpbi 229 | . . 3 ⊢ ≀ ◡𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦} |
15 | 11, 14 | ineq12i 4204 | . 2 ⊢ ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) |
16 | 5, 8, 15 | 3eqtr4i 2763 | 1 ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 Vcvv 3463 ∩ cin 3939 class class class wbr 5143 {copab 5205 ◡ccnv 5671 Rel wrel 5677 ⋉ cxrn 37703 ≀ ccoss 37704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7989 df-2nd 7990 df-ec 8723 df-xrn 37898 df-coss 37938 |
This theorem is referenced by: disjxrn 38273 |
Copyright terms: Public domain | W3C validator |