![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cosscnvxrn | Structured version Visualization version GIF version |
Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
Ref | Expression |
---|---|
1cosscnvxrn | ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cosscnvxrn 36982 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦 ↔ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦))) | |
2 | 1 | el2v 3452 | . . . 4 ⊢ (𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦 ↔ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)) |
3 | 2 | opabbii 5173 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)} |
4 | inopab 5786 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)} | |
5 | 3, 4 | eqtr4i 2764 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} = ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) |
6 | relcoss 36931 | . . 3 ⊢ Rel ≀ ◡(𝐴 ⋉ 𝐵) | |
7 | dfrel4v 6143 | . . 3 ⊢ (Rel ≀ ◡(𝐴 ⋉ 𝐵) ↔ ≀ ◡(𝐴 ⋉ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦}) | |
8 | 6, 7 | mpbi 229 | . 2 ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} |
9 | relcoss 36931 | . . . 4 ⊢ Rel ≀ ◡𝐴 | |
10 | dfrel4v 6143 | . . . 4 ⊢ (Rel ≀ ◡𝐴 ↔ ≀ ◡𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦}) | |
11 | 9, 10 | mpbi 229 | . . 3 ⊢ ≀ ◡𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} |
12 | relcoss 36931 | . . . 4 ⊢ Rel ≀ ◡𝐵 | |
13 | dfrel4v 6143 | . . . 4 ⊢ (Rel ≀ ◡𝐵 ↔ ≀ ◡𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) | |
14 | 12, 13 | mpbi 229 | . . 3 ⊢ ≀ ◡𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦} |
15 | 11, 14 | ineq12i 4171 | . 2 ⊢ ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) |
16 | 5, 8, 15 | 3eqtr4i 2771 | 1 ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 Vcvv 3444 ∩ cin 3910 class class class wbr 5106 {copab 5168 ◡ccnv 5633 Rel wrel 5639 ⋉ cxrn 36679 ≀ ccoss 36680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fo 6503 df-fv 6505 df-1st 7922 df-2nd 7923 df-ec 8653 df-xrn 36879 df-coss 36919 |
This theorem is referenced by: disjxrn 37254 |
Copyright terms: Public domain | W3C validator |