Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cosscnvxrn Structured version   Visualization version   GIF version

Theorem 1cosscnvxrn 38431
Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
1cosscnvxrn (𝐴𝐵) = ( ≀ 𝐴 ∩ ≀ 𝐵)

Proof of Theorem 1cosscnvxrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 br1cosscnvxrn 38430 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵𝑦)))
21el2v 3495 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵𝑦))
32opabbii 5233 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥𝐵𝑦)}
4 inopab 5853 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥𝐵𝑦)}
53, 4eqtr4i 2771 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦} = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
6 relcoss 38379 . . 3 Rel ≀ (𝐴𝐵)
7 dfrel4v 6221 . . 3 (Rel ≀ (𝐴𝐵) ↔ ≀ (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦})
86, 7mpbi 230 . 2 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦}
9 relcoss 38379 . . . 4 Rel ≀ 𝐴
10 dfrel4v 6221 . . . 4 (Rel ≀ 𝐴 ↔ ≀ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦})
119, 10mpbi 230 . . 3 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦}
12 relcoss 38379 . . . 4 Rel ≀ 𝐵
13 dfrel4v 6221 . . . 4 (Rel ≀ 𝐵 ↔ ≀ 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
1412, 13mpbi 230 . . 3 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦}
1511, 14ineq12i 4239 . 2 ( ≀ 𝐴 ∩ ≀ 𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
165, 8, 153eqtr4i 2778 1 (𝐴𝐵) = ( ≀ 𝐴 ∩ ≀ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  Vcvv 3488  cin 3975   class class class wbr 5166  {copab 5228  ccnv 5699  Rel wrel 5705  cxrn 38134  ccoss 38135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-ec 8765  df-xrn 38327  df-coss 38367
This theorem is referenced by:  disjxrn  38702
  Copyright terms: Public domain W3C validator