Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cosscnvxrn | Structured version Visualization version GIF version |
Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
Ref | Expression |
---|---|
1cosscnvxrn | ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cosscnvxrn 36519 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦 ↔ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦))) | |
2 | 1 | el2v 3430 | . . . 4 ⊢ (𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦 ↔ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)) |
3 | 2 | opabbii 5137 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)} |
4 | inopab 5728 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐵𝑦}) = {〈𝑥, 𝑦〉 ∣ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)} | |
5 | 3, 4 | eqtr4i 2769 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} = ({〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐵𝑦}) |
6 | relcoss 36473 | . . 3 ⊢ Rel ≀ ◡(𝐴 ⋉ 𝐵) | |
7 | dfrel4v 6082 | . . 3 ⊢ (Rel ≀ ◡(𝐴 ⋉ 𝐵) ↔ ≀ ◡(𝐴 ⋉ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦}) | |
8 | 6, 7 | mpbi 229 | . 2 ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} |
9 | relcoss 36473 | . . . 4 ⊢ Rel ≀ ◡𝐴 | |
10 | dfrel4v 6082 | . . . 4 ⊢ (Rel ≀ ◡𝐴 ↔ ≀ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐴𝑦}) | |
11 | 9, 10 | mpbi 229 | . . 3 ⊢ ≀ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐴𝑦} |
12 | relcoss 36473 | . . . 4 ⊢ Rel ≀ ◡𝐵 | |
13 | dfrel4v 6082 | . . . 4 ⊢ (Rel ≀ ◡𝐵 ↔ ≀ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐵𝑦}) | |
14 | 12, 13 | mpbi 229 | . . 3 ⊢ ≀ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐵𝑦} |
15 | 11, 14 | ineq12i 4141 | . 2 ⊢ ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {〈𝑥, 𝑦〉 ∣ 𝑥 ≀ ◡𝐵𝑦}) |
16 | 5, 8, 15 | 3eqtr4i 2776 | 1 ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 Vcvv 3422 ∩ cin 3882 class class class wbr 5070 {copab 5132 ◡ccnv 5579 Rel wrel 5585 ⋉ cxrn 36259 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-1st 7804 df-2nd 7805 df-ec 8458 df-xrn 36428 df-coss 36464 |
This theorem is referenced by: disjxrn 36782 |
Copyright terms: Public domain | W3C validator |