Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cosscnvxrn Structured version   Visualization version   GIF version

Theorem 1cosscnvxrn 36520
Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.)
Assertion
Ref Expression
1cosscnvxrn (𝐴𝐵) = ( ≀ 𝐴 ∩ ≀ 𝐵)

Proof of Theorem 1cosscnvxrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 br1cosscnvxrn 36519 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵𝑦)))
21el2v 3430 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵𝑦))
32opabbii 5137 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥𝐵𝑦)}
4 inopab 5728 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥𝐵𝑦)}
53, 4eqtr4i 2769 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦} = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
6 relcoss 36473 . . 3 Rel ≀ (𝐴𝐵)
7 dfrel4v 6082 . . 3 (Rel ≀ (𝐴𝐵) ↔ ≀ (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦})
86, 7mpbi 229 . 2 (𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(𝐴𝐵)𝑦}
9 relcoss 36473 . . . 4 Rel ≀ 𝐴
10 dfrel4v 6082 . . . 4 (Rel ≀ 𝐴 ↔ ≀ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦})
119, 10mpbi 229 . . 3 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦}
12 relcoss 36473 . . . 4 Rel ≀ 𝐵
13 dfrel4v 6082 . . . 4 (Rel ≀ 𝐵 ↔ ≀ 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
1412, 13mpbi 229 . . 3 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦}
1511, 14ineq12i 4141 . 2 ( ≀ 𝐴 ∩ ≀ 𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐵𝑦})
165, 8, 153eqtr4i 2776 1 (𝐴𝐵) = ( ≀ 𝐴 ∩ ≀ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  Vcvv 3422  cin 3882   class class class wbr 5070  {copab 5132  ccnv 5579  Rel wrel 5585  cxrn 36259  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-1st 7804  df-2nd 7805  df-ec 8458  df-xrn 36428  df-coss 36464
This theorem is referenced by:  disjxrn  36782
  Copyright terms: Public domain W3C validator