![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1cosscnvxrn | Structured version Visualization version GIF version |
Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
Ref | Expression |
---|---|
1cosscnvxrn | ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cosscnvxrn 37870 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦 ↔ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦))) | |
2 | 1 | el2v 3477 | . . . 4 ⊢ (𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦 ↔ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)) |
3 | 2 | opabbii 5209 | . . 3 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)} |
4 | inopab 5825 | . . 3 ⊢ ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ≀ ◡𝐴𝑦 ∧ 𝑥 ≀ ◡𝐵𝑦)} | |
5 | 3, 4 | eqtr4i 2758 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} = ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) |
6 | relcoss 37819 | . . 3 ⊢ Rel ≀ ◡(𝐴 ⋉ 𝐵) | |
7 | dfrel4v 6188 | . . 3 ⊢ (Rel ≀ ◡(𝐴 ⋉ 𝐵) ↔ ≀ ◡(𝐴 ⋉ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦}) | |
8 | 6, 7 | mpbi 229 | . 2 ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡(𝐴 ⋉ 𝐵)𝑦} |
9 | relcoss 37819 | . . . 4 ⊢ Rel ≀ ◡𝐴 | |
10 | dfrel4v 6188 | . . . 4 ⊢ (Rel ≀ ◡𝐴 ↔ ≀ ◡𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦}) | |
11 | 9, 10 | mpbi 229 | . . 3 ⊢ ≀ ◡𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} |
12 | relcoss 37819 | . . . 4 ⊢ Rel ≀ ◡𝐵 | |
13 | dfrel4v 6188 | . . . 4 ⊢ (Rel ≀ ◡𝐵 ↔ ≀ ◡𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) | |
14 | 12, 13 | mpbi 229 | . . 3 ⊢ ≀ ◡𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦} |
15 | 11, 14 | ineq12i 4206 | . 2 ⊢ ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) = ({⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐴𝑦} ∩ {⟨𝑥, 𝑦⟩ ∣ 𝑥 ≀ ◡𝐵𝑦}) |
16 | 5, 8, 15 | 3eqtr4i 2765 | 1 ⊢ ≀ ◡(𝐴 ⋉ 𝐵) = ( ≀ ◡𝐴 ∩ ≀ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 Vcvv 3469 ∩ cin 3943 class class class wbr 5142 {copab 5204 ◡ccnv 5671 Rel wrel 5677 ⋉ cxrn 37569 ≀ ccoss 37570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-1st 7985 df-2nd 7986 df-ec 8718 df-xrn 37767 df-coss 37807 |
This theorem is referenced by: disjxrn 38142 |
Copyright terms: Public domain | W3C validator |