Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnn0 Structured version   Visualization version   GIF version

Theorem dmsnn0 6035
 Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmsnn0 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)

Proof of Theorem dmsnn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3447 . . . . 5 𝑥 ∈ V
21eldm 5737 . . . 4 (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦)
3 df-br 5034 . . . . . 6 (𝑥{𝐴}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {𝐴})
4 opex 5324 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
54elsn 4543 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {𝐴} ↔ ⟨𝑥, 𝑦⟩ = 𝐴)
6 eqcom 2808 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴𝐴 = ⟨𝑥, 𝑦⟩)
73, 5, 63bitri 300 . . . . 5 (𝑥{𝐴}𝑦𝐴 = ⟨𝑥, 𝑦⟩)
87exbii 1849 . . . 4 (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
92, 8bitr2i 279 . . 3 (∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝑥 ∈ dom {𝐴})
109exbii 1849 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
11 elvv 5594 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
12 n0 4263 . 2 (dom {𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
1310, 11, 123bitr4i 306 1 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   = wceq 1538  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990  Vcvv 3444  ∅c0 4246  {csn 4528  ⟨cop 4534   class class class wbr 5033   × cxp 5521  dom cdm 5523 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-br 5034  df-opab 5096  df-xp 5529  df-dm 5533 This theorem is referenced by:  rnsnn0  6036  dmsn0  6037  dmsn0el  6039  relsn2  6040  1stnpr  7679  1st2val  7703  mpoxopxnop0  7868  hashfun  13798
 Copyright terms: Public domain W3C validator