![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmsnn0 | Structured version Visualization version GIF version |
Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmsnn0 | ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3481 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm 5913 | . . . 4 ⊢ (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦) |
3 | df-br 5148 | . . . . . 6 ⊢ (𝑥{𝐴}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {𝐴}) | |
4 | opex 5474 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
5 | 4 | elsn 4645 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {𝐴} ↔ 〈𝑥, 𝑦〉 = 𝐴) |
6 | eqcom 2741 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 ↔ 𝐴 = 〈𝑥, 𝑦〉) | |
7 | 3, 5, 6 | 3bitri 297 | . . . . 5 ⊢ (𝑥{𝐴}𝑦 ↔ 𝐴 = 〈𝑥, 𝑦〉) |
8 | 7 | exbii 1844 | . . . 4 ⊢ (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
9 | 2, 8 | bitr2i 276 | . . 3 ⊢ (∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ 𝑥 ∈ dom {𝐴}) |
10 | 9 | exbii 1844 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
11 | elvv 5762 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
12 | n0 4358 | . 2 ⊢ (dom {𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
13 | 10, 11, 12 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1536 ∃wex 1775 ∈ wcel 2105 ≠ wne 2937 Vcvv 3477 ∅c0 4338 {csn 4630 〈cop 4636 class class class wbr 5147 × cxp 5686 dom cdm 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-dm 5698 |
This theorem is referenced by: rnsnn0 6229 dmsn0 6230 dmsn0el 6232 relsn2 6233 1stnpr 8016 1st2val 8040 mpoxopxnop0 8238 cnvfi 9214 hashfun 14472 fineqvac 35089 |
Copyright terms: Public domain | W3C validator |