MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnn0 Structured version   Visualization version   GIF version

Theorem dmsnn0 6050
Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmsnn0 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)

Proof of Theorem dmsnn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3402 . . . . 5 𝑥 ∈ V
21eldm 5754 . . . 4 (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦)
3 df-br 5040 . . . . . 6 (𝑥{𝐴}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {𝐴})
4 opex 5333 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
54elsn 4542 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {𝐴} ↔ ⟨𝑥, 𝑦⟩ = 𝐴)
6 eqcom 2743 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴𝐴 = ⟨𝑥, 𝑦⟩)
73, 5, 63bitri 300 . . . . 5 (𝑥{𝐴}𝑦𝐴 = ⟨𝑥, 𝑦⟩)
87exbii 1855 . . . 4 (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
92, 8bitr2i 279 . . 3 (∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝑥 ∈ dom {𝐴})
109exbii 1855 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
11 elvv 5608 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
12 n0 4247 . 2 (dom {𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
1310, 11, 123bitr4i 306 1 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wex 1787  wcel 2112  wne 2932  Vcvv 3398  c0 4223  {csn 4527  cop 4533   class class class wbr 5039   × cxp 5534  dom cdm 5536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-xp 5542  df-dm 5546
This theorem is referenced by:  rnsnn0  6051  dmsn0  6052  dmsn0el  6054  relsn2  6055  1stnpr  7743  1st2val  7767  mpoxopxnop0  7935  cnvfi  8834  hashfun  13969  fineqvac  32733
  Copyright terms: Public domain W3C validator