MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnn0 Structured version   Visualization version   GIF version

Theorem dmsnn0 6160
Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmsnn0 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)

Proof of Theorem dmsnn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . . 5 𝑥 ∈ V
21eldm 5847 . . . 4 (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦)
3 df-br 5096 . . . . . 6 (𝑥{𝐴}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {𝐴})
4 opex 5411 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
54elsn 4594 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {𝐴} ↔ ⟨𝑥, 𝑦⟩ = 𝐴)
6 eqcom 2736 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴𝐴 = ⟨𝑥, 𝑦⟩)
73, 5, 63bitri 297 . . . . 5 (𝑥{𝐴}𝑦𝐴 = ⟨𝑥, 𝑦⟩)
87exbii 1848 . . . 4 (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
92, 8bitr2i 276 . . 3 (∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝑥 ∈ dom {𝐴})
109exbii 1848 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
11 elvv 5698 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
12 n0 4306 . 2 (dom {𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
1310, 11, 123bitr4i 303 1 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3438  c0 4286  {csn 4579  cop 4585   class class class wbr 5095   × cxp 5621  dom cdm 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-dm 5633
This theorem is referenced by:  rnsnn0  6161  dmsn0  6162  dmsn0el  6164  relsn2  6165  1stnpr  7935  1st2val  7959  mpoxopxnop0  8155  cnvfi  9100  hashfun  14362  fineqvac  35074
  Copyright terms: Public domain W3C validator