| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnn0 | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmsnn0 | ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm 5847 | . . . 4 ⊢ (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦) |
| 3 | df-br 5096 | . . . . . 6 ⊢ (𝑥{𝐴}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {𝐴}) | |
| 4 | opex 5411 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 5 | 4 | elsn 4594 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {𝐴} ↔ 〈𝑥, 𝑦〉 = 𝐴) |
| 6 | eqcom 2736 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 ↔ 𝐴 = 〈𝑥, 𝑦〉) | |
| 7 | 3, 5, 6 | 3bitri 297 | . . . . 5 ⊢ (𝑥{𝐴}𝑦 ↔ 𝐴 = 〈𝑥, 𝑦〉) |
| 8 | 7 | exbii 1848 | . . . 4 ⊢ (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| 9 | 2, 8 | bitr2i 276 | . . 3 ⊢ (∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ 𝑥 ∈ dom {𝐴}) |
| 10 | 9 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
| 11 | elvv 5698 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 12 | n0 4306 | . 2 ⊢ (dom {𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∅c0 4286 {csn 4579 〈cop 4585 class class class wbr 5095 × cxp 5621 dom cdm 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-dm 5633 |
| This theorem is referenced by: rnsnn0 6161 dmsn0 6162 dmsn0el 6164 relsn2 6165 1stnpr 7935 1st2val 7959 mpoxopxnop0 8155 cnvfi 9100 hashfun 14362 fineqvac 35074 |
| Copyright terms: Public domain | W3C validator |