![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmsnn0 | Structured version Visualization version GIF version |
Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmsnn0 | ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | eldm 5860 | . . . 4 ⊢ (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦) |
3 | df-br 5110 | . . . . . 6 ⊢ (𝑥{𝐴}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {𝐴}) | |
4 | opex 5425 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦⟩ ∈ V | |
5 | 4 | elsn 4605 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ {𝐴} ↔ ⟨𝑥, 𝑦⟩ = 𝐴) |
6 | eqcom 2740 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ = 𝐴 ↔ 𝐴 = ⟨𝑥, 𝑦⟩) | |
7 | 3, 5, 6 | 3bitri 297 | . . . . 5 ⊢ (𝑥{𝐴}𝑦 ↔ 𝐴 = ⟨𝑥, 𝑦⟩) |
8 | 7 | exbii 1851 | . . . 4 ⊢ (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) |
9 | 2, 8 | bitr2i 276 | . . 3 ⊢ (∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝑥 ∈ dom {𝐴}) |
10 | 9 | exbii 1851 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
11 | elvv 5710 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩) | |
12 | n0 4310 | . 2 ⊢ (dom {𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
13 | 10, 11, 12 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2940 Vcvv 3447 ∅c0 4286 {csn 4590 ⟨cop 4596 class class class wbr 5109 × cxp 5635 dom cdm 5637 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-br 5110 df-opab 5172 df-xp 5643 df-dm 5647 |
This theorem is referenced by: rnsnn0 6164 dmsn0 6165 dmsn0el 6167 relsn2 6168 1stnpr 7929 1st2val 7953 mpoxopxnop0 8150 cnvfi 9130 hashfun 14346 fineqvac 33762 |
Copyright terms: Public domain | W3C validator |