MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnn0 Structured version   Visualization version   GIF version

Theorem dmsnn0 6099
Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmsnn0 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)

Proof of Theorem dmsnn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . 5 𝑥 ∈ V
21eldm 5798 . . . 4 (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦)
3 df-br 5071 . . . . . 6 (𝑥{𝐴}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {𝐴})
4 opex 5373 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
54elsn 4573 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {𝐴} ↔ ⟨𝑥, 𝑦⟩ = 𝐴)
6 eqcom 2745 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴𝐴 = ⟨𝑥, 𝑦⟩)
73, 5, 63bitri 296 . . . . 5 (𝑥{𝐴}𝑦𝐴 = ⟨𝑥, 𝑦⟩)
87exbii 1851 . . . 4 (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
92, 8bitr2i 275 . . 3 (∃𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝑥 ∈ dom {𝐴})
109exbii 1851 . 2 (∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
11 elvv 5652 . 2 (𝐴 ∈ (V × V) ↔ ∃𝑥𝑦 𝐴 = ⟨𝑥, 𝑦⟩)
12 n0 4277 . 2 (dom {𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ dom {𝐴})
1310, 11, 123bitr4i 302 1 (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1783  wcel 2108  wne 2942  Vcvv 3422  c0 4253  {csn 4558  cop 4564   class class class wbr 5070   × cxp 5578  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590
This theorem is referenced by:  rnsnn0  6100  dmsn0  6101  dmsn0el  6103  relsn2  6104  1stnpr  7808  1st2val  7832  mpoxopxnop0  8002  cnvfi  8924  hashfun  14080  fineqvac  32966
  Copyright terms: Public domain W3C validator