| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnn0 | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmsnn0 | ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm 5880 | . . . 4 ⊢ (𝑥 ∈ dom {𝐴} ↔ ∃𝑦 𝑥{𝐴}𝑦) |
| 3 | df-br 5120 | . . . . . 6 ⊢ (𝑥{𝐴}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {𝐴}) | |
| 4 | opex 5439 | . . . . . . 7 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 5 | 4 | elsn 4616 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {𝐴} ↔ 〈𝑥, 𝑦〉 = 𝐴) |
| 6 | eqcom 2742 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 ↔ 𝐴 = 〈𝑥, 𝑦〉) | |
| 7 | 3, 5, 6 | 3bitri 297 | . . . . 5 ⊢ (𝑥{𝐴}𝑦 ↔ 𝐴 = 〈𝑥, 𝑦〉) |
| 8 | 7 | exbii 1848 | . . . 4 ⊢ (∃𝑦 𝑥{𝐴}𝑦 ↔ ∃𝑦 𝐴 = 〈𝑥, 𝑦〉) |
| 9 | 2, 8 | bitr2i 276 | . . 3 ⊢ (∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ 𝑥 ∈ dom {𝐴}) |
| 10 | 9 | exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) |
| 11 | elvv 5729 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝐴 = 〈𝑥, 𝑦〉) | |
| 12 | n0 4328 | . 2 ⊢ (dom {𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 ∈ dom {𝐴}) | |
| 13 | 10, 11, 12 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 {csn 4601 〈cop 4607 class class class wbr 5119 × cxp 5652 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-dm 5664 |
| This theorem is referenced by: rnsnn0 6197 dmsn0 6198 dmsn0el 6200 relsn2 6201 1stnpr 7992 1st2val 8016 mpoxopxnop0 8214 cnvfi 9190 hashfun 14455 fineqvac 35128 |
| Copyright terms: Public domain | W3C validator |