| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnopg | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnopg | ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 3441 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opth1 5420 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑥 = 𝐴) |
| 4 | 3 | exlimiv 1931 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑥 = 𝐴) |
| 5 | opeq1 4826 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉) | |
| 6 | opeq2 4827 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝐵〉) | |
| 7 | 6 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉)) |
| 8 | 7 | spcegv 3548 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉 → ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉)) |
| 9 | 5, 8 | syl5 34 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥 = 𝐴 → ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉)) |
| 10 | 4, 9 | impbid2 226 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 𝑥 = 𝐴)) |
| 11 | 1 | eldm2 5847 | . . . 4 ⊢ (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉}) |
| 12 | opex 5409 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 13 | 12 | elsn 4592 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 14 | 13 | exbii 1849 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 15 | 11, 14 | bitri 275 | . . 3 ⊢ (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 16 | velsn 4593 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 17 | 10, 15, 16 | 3bitr4g 314 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ 𝑥 ∈ {𝐴})) |
| 18 | 17 | eqrdv 2731 | 1 ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2113 {csn 4577 〈cop 4583 dom cdm 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-dm 5631 |
| This theorem is referenced by: dmsnopss 6169 dmpropg 6170 dmsnop 6171 rnsnopg 6176 fnsng 6541 funprg 6543 funtpg 6544 fntpg 6549 funsnfsupp 9287 s1dmALT 14524 setsval 17085 setsdm 17088 estrreslem2 18052 snstriedgval 29037 1loopgrvd0 29504 1hevtxdg0 29505 1hevtxdg1 29506 1egrvtxdg1 29509 p1evtxdeqlem 29512 wlkp1 29679 eupthp1 30217 trlsegvdeglem5 30225 cosnopne 32699 bnj96 34949 bnj535 34974 ovnovollem1 46816 |
| Copyright terms: Public domain | W3C validator |