| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmsnopg | Structured version Visualization version GIF version | ||
| Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| dmsnopg | ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | vex 3440 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opth1 5410 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑥 = 𝐴) |
| 4 | 3 | exlimiv 1931 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 → 𝑥 = 𝐴) |
| 5 | opeq1 4820 | . . . . 5 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉) | |
| 6 | opeq2 4821 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝐵〉) | |
| 7 | 6 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉)) |
| 8 | 7 | spcegv 3547 | . . . . 5 ⊢ (𝐵 ∈ 𝑉 → (〈𝑥, 𝐵〉 = 〈𝐴, 𝐵〉 → ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉)) |
| 9 | 5, 8 | syl5 34 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥 = 𝐴 → ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉)) |
| 10 | 4, 9 | impbid2 226 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉 ↔ 𝑥 = 𝐴)) |
| 11 | 1 | eldm2 5836 | . . . 4 ⊢ (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉}) |
| 12 | opex 5399 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ∈ V | |
| 13 | 12 | elsn 4586 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ 〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 14 | 13 | exbii 1849 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 15 | 11, 14 | bitri 275 | . . 3 ⊢ (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ ∃𝑦〈𝑥, 𝑦〉 = 〈𝐴, 𝐵〉) |
| 16 | velsn 4587 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 17 | 10, 15, 16 | 3bitr4g 314 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ dom {〈𝐴, 𝐵〉} ↔ 𝑥 ∈ {𝐴})) |
| 18 | 17 | eqrdv 2729 | 1 ⊢ (𝐵 ∈ 𝑉 → dom {〈𝐴, 𝐵〉} = {𝐴}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {csn 4571 〈cop 4577 dom cdm 5611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-dm 5621 |
| This theorem is referenced by: dmsnopss 6156 dmpropg 6157 dmsnop 6158 rnsnopg 6163 fnsng 6528 funprg 6530 funtpg 6531 fntpg 6536 funsnfsupp 9271 s1dmALT 14512 setsval 17073 setsdm 17076 estrreslem2 18039 snstriedgval 29011 1loopgrvd0 29478 1hevtxdg0 29479 1hevtxdg1 29480 1egrvtxdg1 29483 p1evtxdeqlem 29486 wlkp1 29653 eupthp1 30188 trlsegvdeglem5 30196 cosnopne 32667 bnj96 34869 bnj535 34894 ovnovollem1 46694 |
| Copyright terms: Public domain | W3C validator |