MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnopg Structured version   Visualization version   GIF version

Theorem dmsnopg 6186
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnopg (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})

Proof of Theorem dmsnopg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . . 6 𝑥 ∈ V
2 vex 3451 . . . . . 6 𝑦 ∈ V
31, 2opth1 5435 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴)
43exlimiv 1930 . . . 4 (∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴)
5 opeq1 4837 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
6 opeq2 4838 . . . . . . 7 (𝑦 = 𝐵 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐵⟩)
76eqeq1d 2731 . . . . . 6 (𝑦 = 𝐵 → (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
87spcegv 3563 . . . . 5 (𝐵𝑉 → (⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩ → ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩))
95, 8syl5 34 . . . 4 (𝐵𝑉 → (𝑥 = 𝐴 → ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩))
104, 9impbid2 226 . . 3 (𝐵𝑉 → (∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ 𝑥 = 𝐴))
111eldm2 5865 . . . 4 (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
12 opex 5424 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1312elsn 4604 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1413exbii 1848 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1511, 14bitri 275 . . 3 (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
16 velsn 4605 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
1710, 15, 163bitr4g 314 . 2 (𝐵𝑉 → (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ 𝑥 ∈ {𝐴}))
1817eqrdv 2727 1 (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  {csn 4589  cop 4595  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-dm 5648
This theorem is referenced by:  dmsnopss  6187  dmpropg  6188  dmsnop  6189  rnsnopg  6194  fnsng  6568  funprg  6570  funtpg  6571  fntpg  6576  funsnfsupp  9343  s1dmALT  14574  setsval  17137  setsdm  17140  estrreslem2  18099  snstriedgval  28965  1loopgrvd0  29432  1hevtxdg0  29433  1hevtxdg1  29434  1egrvtxdg1  29437  p1evtxdeqlem  29440  wlkp1  29609  eupthp1  30145  trlsegvdeglem5  30153  cosnopne  32617  bnj96  34855  bnj535  34880  ovnovollem1  46654
  Copyright terms: Public domain W3C validator