MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnopg Structured version   Visualization version   GIF version

Theorem dmsnopg 6105
Description: The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnopg (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})

Proof of Theorem dmsnopg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . . 6 𝑥 ∈ V
2 vex 3426 . . . . . 6 𝑦 ∈ V
31, 2opth1 5384 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴)
43exlimiv 1934 . . . 4 (∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ → 𝑥 = 𝐴)
5 opeq1 4801 . . . . 5 (𝑥 = 𝐴 → ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
6 opeq2 4802 . . . . . . 7 (𝑦 = 𝐵 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐵⟩)
76eqeq1d 2740 . . . . . 6 (𝑦 = 𝐵 → (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
87spcegv 3526 . . . . 5 (𝐵𝑉 → (⟨𝑥, 𝐵⟩ = ⟨𝐴, 𝐵⟩ → ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩))
95, 8syl5 34 . . . 4 (𝐵𝑉 → (𝑥 = 𝐴 → ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩))
104, 9impbid2 225 . . 3 (𝐵𝑉 → (∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ 𝑥 = 𝐴))
111eldm2 5799 . . . 4 (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
12 opex 5373 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1312elsn 4573 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1413exbii 1851 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
1511, 14bitri 274 . . 3 (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ ∃𝑦𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
16 velsn 4574 . . 3 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
1710, 15, 163bitr4g 313 . 2 (𝐵𝑉 → (𝑥 ∈ dom {⟨𝐴, 𝐵⟩} ↔ 𝑥 ∈ {𝐴}))
1817eqrdv 2736 1 (𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wex 1783  wcel 2108  {csn 4558  cop 4564  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-dm 5590
This theorem is referenced by:  dmsnopss  6106  dmpropg  6107  dmsnop  6108  rnsnopg  6113  fnsng  6470  funprg  6472  funtpg  6473  fntpg  6478  funsnfsupp  9082  s1dmALT  14242  setsval  16796  setsdm  16799  estrreslem2  17771  snstriedgval  27311  1loopgrvd0  27774  1hevtxdg0  27775  1hevtxdg1  27776  1egrvtxdg1  27779  p1evtxdeqlem  27782  wlkp1  27951  eupthp1  28481  trlsegvdeglem5  28489  cosnopne  30929  bnj96  32745  bnj535  32770  ovnovollem1  44084
  Copyright terms: Public domain W3C validator