MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclexg Structured version   Visualization version   GIF version

Theorem ttrclexg 9442
Description: If 𝑅 is a set, then so is t++𝑅. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
ttrclexg (𝑅𝑉 → t++𝑅 ∈ V)

Proof of Theorem ttrclexg
StepHypRef Expression
1 dmexg 7737 . . 3 (𝑅𝑉 → dom 𝑅 ∈ V)
2 rnexg 7738 . . 3 (𝑅𝑉 → ran 𝑅 ∈ V)
31, 2xpexd 7592 . 2 (𝑅𝑉 → (dom 𝑅 × ran 𝑅) ∈ V)
4 relttrcl 9431 . . . . 5 Rel t++𝑅
5 relssdmrn 6169 . . . . 5 (Rel t++𝑅 → t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅))
64, 5ax-mp 5 . . . 4 t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅)
7 dmttrcl 9440 . . . . 5 dom t++𝑅 = dom 𝑅
8 rnttrcl 9441 . . . . 5 ran t++𝑅 = ran 𝑅
97, 8xpeq12i 5616 . . . 4 (dom t++𝑅 × ran t++𝑅) = (dom 𝑅 × ran 𝑅)
106, 9sseqtri 3961 . . 3 t++𝑅 ⊆ (dom 𝑅 × ran 𝑅)
1110a1i 11 . 2 (𝑅𝑉 → t++𝑅 ⊆ (dom 𝑅 × ran 𝑅))
123, 11ssexd 5251 1 (𝑅𝑉 → t++𝑅 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3430  wss 3891   × cxp 5586  dom cdm 5588  ran crn 5589  Rel wrel 5593  t++cttrcl 9426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-ttrcl 9427
This theorem is referenced by:  dfttrcl2  9443
  Copyright terms: Public domain W3C validator