MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttrclexg Structured version   Visualization version   GIF version

Theorem ttrclexg 9742
Description: If 𝑅 is a set, then so is t++𝑅. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
ttrclexg (𝑅𝑉 → t++𝑅 ∈ V)

Proof of Theorem ttrclexg
StepHypRef Expression
1 dmexg 7902 . . 3 (𝑅𝑉 → dom 𝑅 ∈ V)
2 rnexg 7903 . . 3 (𝑅𝑉 → ran 𝑅 ∈ V)
31, 2xpexd 7750 . 2 (𝑅𝑉 → (dom 𝑅 × ran 𝑅) ∈ V)
4 relttrcl 9731 . . . . 5 Rel t++𝑅
5 relssdmrn 6262 . . . . 5 (Rel t++𝑅 → t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅))
64, 5ax-mp 5 . . . 4 t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅)
7 dmttrcl 9740 . . . . 5 dom t++𝑅 = dom 𝑅
8 rnttrcl 9741 . . . . 5 ran t++𝑅 = ran 𝑅
97, 8xpeq12i 5687 . . . 4 (dom t++𝑅 × ran t++𝑅) = (dom 𝑅 × ran 𝑅)
106, 9sseqtri 4012 . . 3 t++𝑅 ⊆ (dom 𝑅 × ran 𝑅)
1110a1i 11 . 2 (𝑅𝑉 → t++𝑅 ⊆ (dom 𝑅 × ran 𝑅))
123, 11ssexd 5299 1 (𝑅𝑉 → t++𝑅 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3464  wss 3931   × cxp 5657  dom cdm 5659  ran crn 5660  Rel wrel 5664  t++cttrcl 9726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-ttrcl 9727
This theorem is referenced by:  dfttrcl2  9743
  Copyright terms: Public domain W3C validator