| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttrclexg | Structured version Visualization version GIF version | ||
| Description: If 𝑅 is a set, then so is t++𝑅. (Contributed by Scott Fenton, 26-Oct-2024.) |
| Ref | Expression |
|---|---|
| ttrclexg | ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7895 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
| 2 | rnexg 7896 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | |
| 3 | 1, 2 | xpexd 7743 | . 2 ⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 × ran 𝑅) ∈ V) |
| 4 | relttrcl 9724 | . . . . 5 ⊢ Rel t++𝑅 | |
| 5 | relssdmrn 6257 | . . . . 5 ⊢ (Rel t++𝑅 → t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅) |
| 7 | dmttrcl 9733 | . . . . 5 ⊢ dom t++𝑅 = dom 𝑅 | |
| 8 | rnttrcl 9734 | . . . . 5 ⊢ ran t++𝑅 = ran 𝑅 | |
| 9 | 7, 8 | xpeq12i 5682 | . . . 4 ⊢ (dom t++𝑅 × ran t++𝑅) = (dom 𝑅 × ran 𝑅) |
| 10 | 6, 9 | sseqtri 4007 | . . 3 ⊢ t++𝑅 ⊆ (dom 𝑅 × ran 𝑅) |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
| 12 | 3, 11 | ssexd 5294 | 1 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 × cxp 5652 dom cdm 5654 ran crn 5655 Rel wrel 5659 t++cttrcl 9719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-ttrcl 9720 |
| This theorem is referenced by: dfttrcl2 9736 |
| Copyright terms: Public domain | W3C validator |