| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttrclexg | Structured version Visualization version GIF version | ||
| Description: If 𝑅 is a set, then so is t++𝑅. (Contributed by Scott Fenton, 26-Oct-2024.) |
| Ref | Expression |
|---|---|
| ttrclexg | ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7877 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
| 2 | rnexg 7878 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | |
| 3 | 1, 2 | xpexd 7727 | . 2 ⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 × ran 𝑅) ∈ V) |
| 4 | relttrcl 9665 | . . . . 5 ⊢ Rel t++𝑅 | |
| 5 | relssdmrn 6241 | . . . . 5 ⊢ (Rel t++𝑅 → t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅) |
| 7 | dmttrcl 9674 | . . . . 5 ⊢ dom t++𝑅 = dom 𝑅 | |
| 8 | rnttrcl 9675 | . . . . 5 ⊢ ran t++𝑅 = ran 𝑅 | |
| 9 | 7, 8 | xpeq12i 5666 | . . . 4 ⊢ (dom t++𝑅 × ran t++𝑅) = (dom 𝑅 × ran 𝑅) |
| 10 | 6, 9 | sseqtri 3995 | . . 3 ⊢ t++𝑅 ⊆ (dom 𝑅 × ran 𝑅) |
| 11 | 10 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
| 12 | 3, 11 | ssexd 5279 | 1 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 × cxp 5636 dom cdm 5638 ran crn 5639 Rel wrel 5643 t++cttrcl 9660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-ttrcl 9661 |
| This theorem is referenced by: dfttrcl2 9677 |
| Copyright terms: Public domain | W3C validator |