|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ttrclexg | Structured version Visualization version GIF version | ||
| Description: If 𝑅 is a set, then so is t++𝑅. (Contributed by Scott Fenton, 26-Oct-2024.) | 
| Ref | Expression | 
|---|---|
| ttrclexg | ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmexg 7923 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
| 2 | rnexg 7924 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | |
| 3 | 1, 2 | xpexd 7771 | . 2 ⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 × ran 𝑅) ∈ V) | 
| 4 | relttrcl 9752 | . . . . 5 ⊢ Rel t++𝑅 | |
| 5 | relssdmrn 6288 | . . . . 5 ⊢ (Rel t++𝑅 → t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅)) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅) | 
| 7 | dmttrcl 9761 | . . . . 5 ⊢ dom t++𝑅 = dom 𝑅 | |
| 8 | rnttrcl 9762 | . . . . 5 ⊢ ran t++𝑅 = ran 𝑅 | |
| 9 | 7, 8 | xpeq12i 5713 | . . . 4 ⊢ (dom t++𝑅 × ran t++𝑅) = (dom 𝑅 × ran 𝑅) | 
| 10 | 6, 9 | sseqtri 4032 | . . 3 ⊢ t++𝑅 ⊆ (dom 𝑅 × ran 𝑅) | 
| 11 | 10 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | 
| 12 | 3, 11 | ssexd 5324 | 1 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 × cxp 5683 dom cdm 5685 ran crn 5686 Rel wrel 5690 t++cttrcl 9747 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-ttrcl 9748 | 
| This theorem is referenced by: dfttrcl2 9764 | 
| Copyright terms: Public domain | W3C validator |