Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ttrclexg | Structured version Visualization version GIF version |
Description: If 𝑅 is a set, then so is t++𝑅. (Contributed by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
ttrclexg | ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7737 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
2 | rnexg 7738 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | |
3 | 1, 2 | xpexd 7592 | . 2 ⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 × ran 𝑅) ∈ V) |
4 | relttrcl 9431 | . . . . 5 ⊢ Rel t++𝑅 | |
5 | relssdmrn 6169 | . . . . 5 ⊢ (Rel t++𝑅 → t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅) |
7 | dmttrcl 9440 | . . . . 5 ⊢ dom t++𝑅 = dom 𝑅 | |
8 | rnttrcl 9441 | . . . . 5 ⊢ ran t++𝑅 = ran 𝑅 | |
9 | 7, 8 | xpeq12i 5616 | . . . 4 ⊢ (dom t++𝑅 × ran t++𝑅) = (dom 𝑅 × ran 𝑅) |
10 | 6, 9 | sseqtri 3961 | . . 3 ⊢ t++𝑅 ⊆ (dom 𝑅 × ran 𝑅) |
11 | 10 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
12 | 3, 11 | ssexd 5251 | 1 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 × cxp 5586 dom cdm 5588 ran crn 5589 Rel wrel 5593 t++cttrcl 9426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-ttrcl 9427 |
This theorem is referenced by: dfttrcl2 9443 |
Copyright terms: Public domain | W3C validator |