Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ttrclexg | Structured version Visualization version GIF version |
Description: If 𝑅 is a set, then so is t++𝑅. (Contributed by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
ttrclexg | ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7782 | . . 3 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
2 | rnexg 7783 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | |
3 | 1, 2 | xpexd 7633 | . 2 ⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 × ran 𝑅) ∈ V) |
4 | relttrcl 9514 | . . . . 5 ⊢ Rel t++𝑅 | |
5 | relssdmrn 6186 | . . . . 5 ⊢ (Rel t++𝑅 → t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ t++𝑅 ⊆ (dom t++𝑅 × ran t++𝑅) |
7 | dmttrcl 9523 | . . . . 5 ⊢ dom t++𝑅 = dom 𝑅 | |
8 | rnttrcl 9524 | . . . . 5 ⊢ ran t++𝑅 = ran 𝑅 | |
9 | 7, 8 | xpeq12i 5628 | . . . 4 ⊢ (dom t++𝑅 × ran t++𝑅) = (dom 𝑅 × ran 𝑅) |
10 | 6, 9 | sseqtri 3962 | . . 3 ⊢ t++𝑅 ⊆ (dom 𝑅 × ran 𝑅) |
11 | 10 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
12 | 3, 11 | ssexd 5257 | 1 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 × cxp 5598 dom cdm 5600 ran crn 5601 Rel wrel 5605 t++cttrcl 9509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-ttrcl 9510 |
This theorem is referenced by: dfttrcl2 9526 |
Copyright terms: Public domain | W3C validator |