![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riinn0 | Structured version Visualization version GIF version |
Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
riinn0 | ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4217 | . 2 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) | |
2 | r19.2z 4501 | . . . . 5 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) → ∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) | |
3 | 2 | ancoms 458 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) |
4 | iinss 5061 | . . . 4 ⊢ (∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) |
6 | dfss2 3981 | . . 3 ⊢ (∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ↔ (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) = ∩ 𝑥 ∈ 𝑋 𝑆) | |
7 | 5, 6 | sylib 218 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) = ∩ 𝑥 ∈ 𝑋 𝑆) |
8 | 1, 7 | eqtrid 2787 | 1 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-iin 4999 |
This theorem is referenced by: riinrab 5089 riiner 8829 mreriincl 17643 riinopn 22930 alexsublem 24068 fnemeet1 36349 |
Copyright terms: Public domain | W3C validator |