| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riinn0 | Structured version Visualization version GIF version | ||
| Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| riinn0 | ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4209 | . 2 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) | |
| 2 | r19.2z 4495 | . . . . 5 ⊢ ((𝑋 ≠ ∅ ∧ ∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) → ∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) | |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → ∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) |
| 4 | iinss 5056 | . . . 4 ⊢ (∃𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → ∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴) |
| 6 | dfss2 3969 | . . 3 ⊢ (∩ 𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ↔ (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) = ∩ 𝑥 ∈ 𝑋 𝑆) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (∩ 𝑥 ∈ 𝑋 𝑆 ∩ 𝐴) = ∩ 𝑥 ∈ 𝑋 𝑆) |
| 8 | 1, 7 | eqtrid 2789 | 1 ⊢ ((∀𝑥 ∈ 𝑋 𝑆 ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 𝑆) = ∩ 𝑥 ∈ 𝑋 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 ∩ ciin 4992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 df-ss 3968 df-nul 4334 df-iin 4994 |
| This theorem is referenced by: riinrab 5084 riiner 8830 mreriincl 17641 riinopn 22914 alexsublem 24052 fnemeet1 36367 |
| Copyright terms: Public domain | W3C validator |