MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinn0 Structured version   Visualization version   GIF version

Theorem riinn0 5042
Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riinn0 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riinn0
StepHypRef Expression
1 incom 4168 . 2 (𝐴 𝑥𝑋 𝑆) = ( 𝑥𝑋 𝑆𝐴)
2 r19.2z 4454 . . . . 5 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋 𝑆𝐴) → ∃𝑥𝑋 𝑆𝐴)
32ancoms 458 . . . 4 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → ∃𝑥𝑋 𝑆𝐴)
4 iinss 5015 . . . 4 (∃𝑥𝑋 𝑆𝐴 𝑥𝑋 𝑆𝐴)
53, 4syl 17 . . 3 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → 𝑥𝑋 𝑆𝐴)
6 dfss2 3929 . . 3 ( 𝑥𝑋 𝑆𝐴 ↔ ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
75, 6sylib 218 . 2 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
81, 7eqtrid 2776 1 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wne 2925  wral 3044  wrex 3053  cin 3910  wss 3911  c0 4292   ciin 4952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-in 3918  df-ss 3928  df-nul 4293  df-iin 4954
This theorem is referenced by:  riinrab  5043  riiner  8740  mreriincl  17535  riinopn  22828  alexsublem  23964  fnemeet1  36347
  Copyright terms: Public domain W3C validator