MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinn0 Structured version   Visualization version   GIF version

Theorem riinn0 5080
Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riinn0 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riinn0
StepHypRef Expression
1 incom 4197 . 2 (𝐴 𝑥𝑋 𝑆) = ( 𝑥𝑋 𝑆𝐴)
2 r19.2z 4490 . . . . 5 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋 𝑆𝐴) → ∃𝑥𝑋 𝑆𝐴)
32ancoms 458 . . . 4 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → ∃𝑥𝑋 𝑆𝐴)
4 iinss 5053 . . . 4 (∃𝑥𝑋 𝑆𝐴 𝑥𝑋 𝑆𝐴)
53, 4syl 17 . . 3 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → 𝑥𝑋 𝑆𝐴)
6 df-ss 3961 . . 3 ( 𝑥𝑋 𝑆𝐴 ↔ ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
75, 6sylib 217 . 2 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
81, 7eqtrid 2779 1 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wne 2935  wral 3056  wrex 3065  cin 3943  wss 3944  c0 4318   ciin 4992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-in 3951  df-ss 3961  df-nul 4319  df-iin 4994
This theorem is referenced by:  riinrab  5081  riiner  8800  mreriincl  17569  riinopn  22797  alexsublem  23935  fnemeet1  35786
  Copyright terms: Public domain W3C validator