Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riinopn | Structured version Visualization version GIF version |
Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
riinopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riin0 4969 | . . . 4 ⊢ (𝐴 = ∅ → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) | |
2 | 1 | adantl 485 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) |
3 | simpl1 1188 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → 𝐽 ∈ Top) | |
4 | 1open.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | topopn 21606 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → 𝑋 ∈ 𝐽) |
7 | 2, 6 | eqeltrd 2852 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
8 | 4 | eltopss 21607 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → 𝐵 ⊆ 𝑋) |
9 | 8 | ex 416 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋)) |
10 | 9 | adantr 484 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋)) |
11 | 10 | ralimdv 3109 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋)) |
12 | 11 | 3impia 1114 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋) |
13 | riinn0 4970 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋 ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 𝐵) | |
14 | 12, 13 | sylan 583 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 𝐵) |
15 | iinopn 21602 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | |
16 | 15 | 3exp2 1351 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐴 ∈ Fin → (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)))) |
17 | 16 | com34 91 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)))) |
18 | 17 | 3imp1 1344 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
19 | 14, 18 | eqeltrd 2852 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
20 | 7, 19 | pm2.61dane 3038 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∩ cin 3857 ⊆ wss 3858 ∅c0 4225 ∪ cuni 4798 ∩ ciin 4884 Fincfn 8527 Topctop 21593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-1st 7693 df-2nd 7694 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-fin 8531 df-top 21594 |
This theorem is referenced by: rintopn 21609 iuncld 21745 |
Copyright terms: Public domain | W3C validator |