MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinopn Structured version   Visualization version   GIF version

Theorem riinopn 22935
Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
riinopn ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem riinopn
StepHypRef Expression
1 riin0 5105 . . . 4 (𝐴 = ∅ → (𝑋 𝑥𝐴 𝐵) = 𝑋)
21adantl 481 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑋)
3 simpl1 1191 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → 𝐽 ∈ Top)
4 1open.1 . . . . 5 𝑋 = 𝐽
54topopn 22933 . . . 4 (𝐽 ∈ Top → 𝑋𝐽)
63, 5syl 17 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → 𝑋𝐽)
72, 6eqeltrd 2844 . 2 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
84eltopss 22934 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝐽) → 𝐵𝑋)
98ex 412 . . . . . . 7 (𝐽 ∈ Top → (𝐵𝐽𝐵𝑋))
109adantr 480 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐵𝐽𝐵𝑋))
1110ralimdv 3175 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (∀𝑥𝐴 𝐵𝐽 → ∀𝑥𝐴 𝐵𝑋))
12113impia 1117 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) → ∀𝑥𝐴 𝐵𝑋)
13 riinn0 5106 . . . 4 ((∀𝑥𝐴 𝐵𝑋𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵)
1412, 13sylan 579 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵)
15 iinopn 22929 . . . . . 6 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
16153exp2 1354 . . . . 5 (𝐽 ∈ Top → (𝐴 ∈ Fin → (𝐴 ≠ ∅ → (∀𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵𝐽))))
1716com34 91 . . . 4 (𝐽 ∈ Top → (𝐴 ∈ Fin → (∀𝑥𝐴 𝐵𝐽 → (𝐴 ≠ ∅ → 𝑥𝐴 𝐵𝐽))))
18173imp1 1347 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵𝐽)
1914, 18eqeltrd 2844 . 2 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
207, 19pm2.61dane 3035 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  cin 3975  wss 3976  c0 4352   cuni 4931   ciin 5016  Fincfn 9003  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-en 9004  df-dom 9005  df-fin 9007  df-top 22921
This theorem is referenced by:  rintopn  22936  iuncld  23074
  Copyright terms: Public domain W3C validator