MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinopn Structured version   Visualization version   GIF version

Theorem riinopn 22915
Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
riinopn ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem riinopn
StepHypRef Expression
1 riin0 5081 . . . 4 (𝐴 = ∅ → (𝑋 𝑥𝐴 𝐵) = 𝑋)
21adantl 481 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑋)
3 simpl1 1191 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → 𝐽 ∈ Top)
4 1open.1 . . . . 5 𝑋 = 𝐽
54topopn 22913 . . . 4 (𝐽 ∈ Top → 𝑋𝐽)
63, 5syl 17 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → 𝑋𝐽)
72, 6eqeltrd 2840 . 2 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
84eltopss 22914 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝐽) → 𝐵𝑋)
98ex 412 . . . . . . 7 (𝐽 ∈ Top → (𝐵𝐽𝐵𝑋))
109adantr 480 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐵𝐽𝐵𝑋))
1110ralimdv 3168 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (∀𝑥𝐴 𝐵𝐽 → ∀𝑥𝐴 𝐵𝑋))
12113impia 1117 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) → ∀𝑥𝐴 𝐵𝑋)
13 riinn0 5082 . . . 4 ((∀𝑥𝐴 𝐵𝑋𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵)
1412, 13sylan 580 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵)
15 iinopn 22909 . . . . . 6 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
16153exp2 1354 . . . . 5 (𝐽 ∈ Top → (𝐴 ∈ Fin → (𝐴 ≠ ∅ → (∀𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵𝐽))))
1716com34 91 . . . 4 (𝐽 ∈ Top → (𝐴 ∈ Fin → (∀𝑥𝐴 𝐵𝐽 → (𝐴 ≠ ∅ → 𝑥𝐴 𝐵𝐽))))
18173imp1 1347 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵𝐽)
1914, 18eqeltrd 2840 . 2 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
207, 19pm2.61dane 3028 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  cin 3949  wss 3950  c0 4332   cuni 4906   ciin 4991  Fincfn 8986  Topctop 22900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-om 7889  df-1st 8015  df-2nd 8016  df-1o 8507  df-2o 8508  df-en 8987  df-dom 8988  df-fin 8990  df-top 22901
This theorem is referenced by:  rintopn  22916  iuncld  23054
  Copyright terms: Public domain W3C validator