| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riinopn | Structured version Visualization version GIF version | ||
| Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| riinopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riin0 5063 | . . . 4 ⊢ (𝐴 = ∅ → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) |
| 3 | simpl1 1192 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → 𝐽 ∈ Top) | |
| 4 | 1open.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | 4 | topopn 22849 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → 𝑋 ∈ 𝐽) |
| 7 | 2, 6 | eqeltrd 2835 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
| 8 | 4 | eltopss 22850 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → 𝐵 ⊆ 𝑋) |
| 9 | 8 | ex 412 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋)) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋)) |
| 11 | 10 | ralimdv 3155 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋)) |
| 12 | 11 | 3impia 1117 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋) |
| 13 | riinn0 5064 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋 ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 𝐵) | |
| 14 | 12, 13 | sylan 580 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 𝐵) |
| 15 | iinopn 22845 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | |
| 16 | 15 | 3exp2 1355 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐴 ∈ Fin → (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)))) |
| 17 | 16 | com34 91 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)))) |
| 18 | 17 | 3imp1 1348 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
| 19 | 14, 18 | eqeltrd 2835 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
| 20 | 7, 19 | pm2.61dane 3020 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 ∩ ciin 4973 Fincfn 8964 Topctop 22836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7867 df-1st 7993 df-2nd 7994 df-1o 8485 df-2o 8486 df-en 8965 df-dom 8966 df-fin 8968 df-top 22837 |
| This theorem is referenced by: rintopn 22852 iuncld 22988 |
| Copyright terms: Public domain | W3C validator |