| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riinopn | Structured version Visualization version GIF version | ||
| Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| riinopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riin0 5046 | . . . 4 ⊢ (𝐴 = ∅ → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) |
| 3 | simpl1 1192 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → 𝐽 ∈ Top) | |
| 4 | 1open.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | 4 | topopn 22793 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → 𝑋 ∈ 𝐽) |
| 7 | 2, 6 | eqeltrd 2828 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
| 8 | 4 | eltopss 22794 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → 𝐵 ⊆ 𝑋) |
| 9 | 8 | ex 412 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋)) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋)) |
| 11 | 10 | ralimdv 3147 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋)) |
| 12 | 11 | 3impia 1117 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋) |
| 13 | riinn0 5047 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋 ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 𝐵) | |
| 14 | 12, 13 | sylan 580 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 𝐵) |
| 15 | iinopn 22789 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | |
| 16 | 15 | 3exp2 1355 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐴 ∈ Fin → (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)))) |
| 17 | 16 | com34 91 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)))) |
| 18 | 17 | 3imp1 1348 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
| 19 | 14, 18 | eqeltrd 2828 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
| 20 | 7, 19 | pm2.61dane 3012 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 ∩ ciin 4956 Fincfn 8918 Topctop 22780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1st 7968 df-2nd 7969 df-1o 8434 df-2o 8435 df-en 8919 df-dom 8920 df-fin 8922 df-top 22781 |
| This theorem is referenced by: rintopn 22796 iuncld 22932 |
| Copyright terms: Public domain | W3C validator |