|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > riinopn | Structured version Visualization version GIF version | ||
| Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| 1open.1 | ⊢ 𝑋 = ∪ 𝐽 | 
| Ref | Expression | 
|---|---|
| riinopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | riin0 5081 | . . . 4 ⊢ (𝐴 = ∅ → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) | 
| 3 | simpl1 1191 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → 𝐽 ∈ Top) | |
| 4 | 1open.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 5 | 4 | topopn 22913 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) | 
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → 𝑋 ∈ 𝐽) | 
| 7 | 2, 6 | eqeltrd 2840 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) | 
| 8 | 4 | eltopss 22914 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → 𝐵 ⊆ 𝑋) | 
| 9 | 8 | ex 412 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋)) | 
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋)) | 
| 11 | 10 | ralimdv 3168 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋)) | 
| 12 | 11 | 3impia 1117 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋) | 
| 13 | riinn0 5082 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋 ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 𝐵) | |
| 14 | 12, 13 | sylan 580 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 𝐵) | 
| 15 | iinopn 22909 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | |
| 16 | 15 | 3exp2 1354 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐴 ∈ Fin → (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)))) | 
| 17 | 16 | com34 91 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)))) | 
| 18 | 17 | 3imp1 1347 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | 
| 19 | 14, 18 | eqeltrd 2840 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) | 
| 20 | 7, 19 | pm2.61dane 3028 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∩ cin 3949 ⊆ wss 3950 ∅c0 4332 ∪ cuni 4906 ∩ ciin 4991 Fincfn 8986 Topctop 22900 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-om 7889 df-1st 8015 df-2nd 8016 df-1o 8507 df-2o 8508 df-en 8987 df-dom 8988 df-fin 8990 df-top 22901 | 
| This theorem is referenced by: rintopn 22916 iuncld 23054 | 
| Copyright terms: Public domain | W3C validator |