Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riinopn | Structured version Visualization version GIF version |
Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
1open.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
riinopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riin0 5011 | . . . 4 ⊢ (𝐴 = ∅ → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) | |
2 | 1 | adantl 482 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = 𝑋) |
3 | simpl1 1190 | . . . 4 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → 𝐽 ∈ Top) | |
4 | 1open.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
5 | 4 | topopn 22055 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → 𝑋 ∈ 𝐽) |
7 | 2, 6 | eqeltrd 2839 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 = ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
8 | 4 | eltopss 22056 | . . . . . . . 8 ⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → 𝐵 ⊆ 𝑋) |
9 | 8 | ex 413 | . . . . . . 7 ⊢ (𝐽 ∈ Top → (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋)) |
10 | 9 | adantr 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑋)) |
11 | 10 | ralimdv 3109 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋)) |
12 | 11 | 3impia 1116 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋) |
13 | riinn0 5012 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝑋 ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 𝐵) | |
14 | 12, 13 | sylan 580 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) = ∩ 𝑥 ∈ 𝐴 𝐵) |
15 | iinopn 22051 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) | |
16 | 15 | 3exp2 1353 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐴 ∈ Fin → (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)))) |
17 | 16 | com34 91 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽 → (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽)))) |
18 | 17 | 3imp1 1346 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) |
19 | 14, 18 | eqeltrd 2839 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
20 | 7, 19 | pm2.61dane 3032 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐽) → (𝑋 ∩ ∩ 𝑥 ∈ 𝐴 𝐵) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ∩ ciin 4925 Fincfn 8733 Topctop 22042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-fin 8737 df-top 22043 |
This theorem is referenced by: rintopn 22058 iuncld 22196 |
Copyright terms: Public domain | W3C validator |