MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreriincl Structured version   Visualization version   GIF version

Theorem mreriincl 17546
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreriincl ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) β†’ (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐢)
Distinct variable groups:   𝑦,𝐼   𝑦,𝑋   𝑦,𝐢
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem mreriincl
StepHypRef Expression
1 riin0 5084 . . . 4 (𝐼 = βˆ… β†’ (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋)
21adantl 480 . . 3 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) ∧ 𝐼 = βˆ…) β†’ (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋)
3 mre1cl 17542 . . . 4 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ 𝑋 ∈ 𝐢)
43ad2antrr 722 . . 3 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) ∧ 𝐼 = βˆ…) β†’ 𝑋 ∈ 𝐢)
52, 4eqeltrd 2831 . 2 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) ∧ 𝐼 = βˆ…) β†’ (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐢)
6 mress 17541 . . . . . . 7 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝑆 ∈ 𝐢) β†’ 𝑆 βŠ† 𝑋)
76ex 411 . . . . . 6 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (𝑆 ∈ 𝐢 β†’ 𝑆 βŠ† 𝑋))
87ralimdv 3167 . . . . 5 (𝐢 ∈ (Mooreβ€˜π‘‹) β†’ (βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢 β†’ βˆ€π‘¦ ∈ 𝐼 𝑆 βŠ† 𝑋))
98imp 405 . . . 4 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) β†’ βˆ€π‘¦ ∈ 𝐼 𝑆 βŠ† 𝑋)
10 riinn0 5085 . . . 4 ((βˆ€π‘¦ ∈ 𝐼 𝑆 βŠ† 𝑋 ∧ 𝐼 β‰  βˆ…) β†’ (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆)
119, 10sylan 578 . . 3 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) ∧ 𝐼 β‰  βˆ…) β†’ (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆)
12 simpll 763 . . . 4 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) ∧ 𝐼 β‰  βˆ…) β†’ 𝐢 ∈ (Mooreβ€˜π‘‹))
13 simpr 483 . . . 4 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) ∧ 𝐼 β‰  βˆ…) β†’ 𝐼 β‰  βˆ…)
14 simplr 765 . . . 4 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) ∧ 𝐼 β‰  βˆ…) β†’ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢)
15 mreiincl 17544 . . . 4 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ 𝐼 β‰  βˆ… ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) β†’ ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐢)
1612, 13, 14, 15syl3anc 1369 . . 3 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) ∧ 𝐼 β‰  βˆ…) β†’ ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐢)
1711, 16eqeltrd 2831 . 2 (((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) ∧ 𝐼 β‰  βˆ…) β†’ (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐢)
185, 17pm2.61dane 3027 1 ((𝐢 ∈ (Mooreβ€˜π‘‹) ∧ βˆ€π‘¦ ∈ 𝐼 𝑆 ∈ 𝐢) β†’ (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐢)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆ€wral 3059   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  βˆ© ciin 4997  β€˜cfv 6542  Moorecmre 17530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-mre 17534
This theorem is referenced by:  acsfn1  17609  acsfn1c  17610  acsfn2  17611  acsfn1p  20558
  Copyright terms: Public domain W3C validator