MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreriincl Structured version   Visualization version   GIF version

Theorem mreriincl 16861
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreriincl ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
Distinct variable groups:   𝑦,𝐼   𝑦,𝑋   𝑦,𝐶
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem mreriincl
StepHypRef Expression
1 riin0 4967 . . . 4 (𝐼 = ∅ → (𝑋 𝑦𝐼 𝑆) = 𝑋)
21adantl 485 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑋)
3 mre1cl 16857 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
43ad2antrr 725 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → 𝑋𝐶)
52, 4eqeltrd 2890 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
6 mress 16856 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
76ex 416 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑆𝐶𝑆𝑋))
87ralimdv 3145 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑦𝐼 𝑆𝐶 → ∀𝑦𝐼 𝑆𝑋))
98imp 410 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → ∀𝑦𝐼 𝑆𝑋)
10 riinn0 4968 . . . 4 ((∀𝑦𝐼 𝑆𝑋𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑦𝐼 𝑆)
119, 10sylan 583 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑦𝐼 𝑆)
12 simpll 766 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋))
13 simpr 488 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝐼 ≠ ∅)
14 simplr 768 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → ∀𝑦𝐼 𝑆𝐶)
15 mreiincl 16859 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆𝐶)
1612, 13, 14, 15syl3anc 1368 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝑦𝐼 𝑆𝐶)
1711, 16eqeltrd 2890 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
185, 17pm2.61dane 3074 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  cin 3880  wss 3881  c0 4243   ciin 4882  cfv 6324  Moorecmre 16845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-mre 16849
This theorem is referenced by:  acsfn1  16924  acsfn1c  16925  acsfn2  16926  acsfn1p  19571
  Copyright terms: Public domain W3C validator