![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mreriincl | Structured version Visualization version GIF version |
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
mreriincl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riin0 5087 | . . . 4 ⊢ (𝐼 = ∅ → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋) |
3 | mre1cl 17639 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
4 | 3 | ad2antrr 726 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → 𝑋 ∈ 𝐶) |
5 | 2, 4 | eqeltrd 2839 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
6 | mress 17638 | . . . . . . 7 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | |
7 | 6 | ex 412 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋)) |
8 | 7 | ralimdv 3167 | . . . . 5 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋)) |
9 | 8 | imp 406 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋) |
10 | riinn0 5088 | . . . 4 ⊢ ((∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆) | |
11 | 9, 10 | sylan 580 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆) |
12 | simpll 767 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋)) | |
13 | simpr 484 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → 𝐼 ≠ ∅) | |
14 | simplr 769 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | |
15 | mreiincl 17641 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | |
16 | 12, 13, 14, 15 | syl3anc 1370 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) |
17 | 11, 16 | eqeltrd 2839 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
18 | 5, 17 | pm2.61dane 3027 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 ∩ ciin 4997 ‘cfv 6563 Moorecmre 17627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-mre 17631 |
This theorem is referenced by: acsfn1 17706 acsfn1c 17707 acsfn2 17708 acsfn1p 20817 |
Copyright terms: Public domain | W3C validator |