| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreriincl | Structured version Visualization version GIF version | ||
| Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| mreriincl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riin0 5058 | . . . 4 ⊢ (𝐼 = ∅ → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋) |
| 3 | mre1cl 17606 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 4 | 3 | ad2antrr 726 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → 𝑋 ∈ 𝐶) |
| 5 | 2, 4 | eqeltrd 2834 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
| 6 | mress 17605 | . . . . . . 7 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | |
| 7 | 6 | ex 412 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋)) |
| 8 | 7 | ralimdv 3154 | . . . . 5 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋)) |
| 9 | 8 | imp 406 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋) |
| 10 | riinn0 5059 | . . . 4 ⊢ ((∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆) | |
| 11 | 9, 10 | sylan 580 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆) |
| 12 | simpll 766 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋)) | |
| 13 | simpr 484 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → 𝐼 ≠ ∅) | |
| 14 | simplr 768 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | |
| 15 | mreiincl 17608 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | |
| 16 | 12, 13, 14, 15 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) |
| 17 | 11, 16 | eqeltrd 2834 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
| 18 | 5, 17 | pm2.61dane 3019 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 ∩ ciin 4968 ‘cfv 6531 Moorecmre 17594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-mre 17598 |
| This theorem is referenced by: acsfn1 17673 acsfn1c 17674 acsfn2 17675 acsfn1p 20759 |
| Copyright terms: Public domain | W3C validator |