Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mreriincl | Structured version Visualization version GIF version |
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
mreriincl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riin0 5011 | . . . 4 ⊢ (𝐼 = ∅ → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋) | |
2 | 1 | adantl 482 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋) |
3 | mre1cl 17303 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
4 | 3 | ad2antrr 723 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → 𝑋 ∈ 𝐶) |
5 | 2, 4 | eqeltrd 2839 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
6 | mress 17302 | . . . . . . 7 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | |
7 | 6 | ex 413 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋)) |
8 | 7 | ralimdv 3109 | . . . . 5 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋)) |
9 | 8 | imp 407 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋) |
10 | riinn0 5012 | . . . 4 ⊢ ((∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆) | |
11 | 9, 10 | sylan 580 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆) |
12 | simpll 764 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋)) | |
13 | simpr 485 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → 𝐼 ≠ ∅) | |
14 | simplr 766 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | |
15 | mreiincl 17305 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | |
16 | 12, 13, 14, 15 | syl3anc 1370 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) |
17 | 11, 16 | eqeltrd 2839 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
18 | 5, 17 | pm2.61dane 3032 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∩ ciin 4925 ‘cfv 6433 Moorecmre 17291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-mre 17295 |
This theorem is referenced by: acsfn1 17370 acsfn1c 17371 acsfn2 17372 acsfn1p 20067 |
Copyright terms: Public domain | W3C validator |