MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreriincl Structured version   Visualization version   GIF version

Theorem mreriincl 17307
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreriincl ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
Distinct variable groups:   𝑦,𝐼   𝑦,𝑋   𝑦,𝐶
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem mreriincl
StepHypRef Expression
1 riin0 5011 . . . 4 (𝐼 = ∅ → (𝑋 𝑦𝐼 𝑆) = 𝑋)
21adantl 482 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑋)
3 mre1cl 17303 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
43ad2antrr 723 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → 𝑋𝐶)
52, 4eqeltrd 2839 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
6 mress 17302 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
76ex 413 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑆𝐶𝑆𝑋))
87ralimdv 3109 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑦𝐼 𝑆𝐶 → ∀𝑦𝐼 𝑆𝑋))
98imp 407 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → ∀𝑦𝐼 𝑆𝑋)
10 riinn0 5012 . . . 4 ((∀𝑦𝐼 𝑆𝑋𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑦𝐼 𝑆)
119, 10sylan 580 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑦𝐼 𝑆)
12 simpll 764 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋))
13 simpr 485 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝐼 ≠ ∅)
14 simplr 766 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → ∀𝑦𝐼 𝑆𝐶)
15 mreiincl 17305 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆𝐶)
1612, 13, 14, 15syl3anc 1370 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝑦𝐼 𝑆𝐶)
1711, 16eqeltrd 2839 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
185, 17pm2.61dane 3032 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  cin 3886  wss 3887  c0 4256   ciin 4925  cfv 6433  Moorecmre 17291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-mre 17295
This theorem is referenced by:  acsfn1  17370  acsfn1c  17371  acsfn2  17372  acsfn1p  20067
  Copyright terms: Public domain W3C validator