| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mreriincl | Structured version Visualization version GIF version | ||
| Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| mreriincl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riin0 5032 | . . . 4 ⊢ (𝐼 = ∅ → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = 𝑋) |
| 3 | mre1cl 17502 | . . . 4 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
| 4 | 3 | ad2antrr 726 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → 𝑋 ∈ 𝐶) |
| 5 | 2, 4 | eqeltrd 2831 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 = ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
| 6 | mress 17501 | . . . . . . 7 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆 ∈ 𝐶) → 𝑆 ⊆ 𝑋) | |
| 7 | 6 | ex 412 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑋)) |
| 8 | 7 | ralimdv 3146 | . . . . 5 ⊢ (𝐶 ∈ (Moore‘𝑋) → (∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶 → ∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋)) |
| 9 | 8 | imp 406 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋) |
| 10 | riinn0 5033 | . . . 4 ⊢ ((∀𝑦 ∈ 𝐼 𝑆 ⊆ 𝑋 ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆) | |
| 11 | 9, 10 | sylan 580 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) = ∩ 𝑦 ∈ 𝐼 𝑆) |
| 12 | simpll 766 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋)) | |
| 13 | simpr 484 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → 𝐼 ≠ ∅) | |
| 14 | simplr 768 | . . . 4 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | |
| 15 | mreiincl 17504 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) | |
| 16 | 12, 13, 14, 15 | syl3anc 1373 | . . 3 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → ∩ 𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) |
| 17 | 11, 16 | eqeltrd 2831 | . 2 ⊢ (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
| 18 | 5, 17 | pm2.61dane 3015 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦 ∈ 𝐼 𝑆 ∈ 𝐶) → (𝑋 ∩ ∩ 𝑦 ∈ 𝐼 𝑆) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∩ cin 3896 ⊆ wss 3897 ∅c0 4282 ∩ ciin 4942 ‘cfv 6487 Moorecmre 17490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6443 df-fun 6489 df-fv 6495 df-mre 17494 |
| This theorem is referenced by: acsfn1 17573 acsfn1c 17574 acsfn2 17575 acsfn1p 20720 |
| Copyright terms: Public domain | W3C validator |