MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreriincl Structured version   Visualization version   GIF version

Theorem mreriincl 17566
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreriincl ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
Distinct variable groups:   𝑦,𝐼   𝑦,𝑋   𝑦,𝐶
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem mreriincl
StepHypRef Expression
1 riin0 5049 . . . 4 (𝐼 = ∅ → (𝑋 𝑦𝐼 𝑆) = 𝑋)
21adantl 481 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑋)
3 mre1cl 17562 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
43ad2antrr 726 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → 𝑋𝐶)
52, 4eqeltrd 2829 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
6 mress 17561 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
76ex 412 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑆𝐶𝑆𝑋))
87ralimdv 3148 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑦𝐼 𝑆𝐶 → ∀𝑦𝐼 𝑆𝑋))
98imp 406 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → ∀𝑦𝐼 𝑆𝑋)
10 riinn0 5050 . . . 4 ((∀𝑦𝐼 𝑆𝑋𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑦𝐼 𝑆)
119, 10sylan 580 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑦𝐼 𝑆)
12 simpll 766 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋))
13 simpr 484 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝐼 ≠ ∅)
14 simplr 768 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → ∀𝑦𝐼 𝑆𝐶)
15 mreiincl 17564 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆𝐶)
1612, 13, 14, 15syl3anc 1373 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝑦𝐼 𝑆𝐶)
1711, 16eqeltrd 2829 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
185, 17pm2.61dane 3013 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  cin 3916  wss 3917  c0 4299   ciin 4959  cfv 6514  Moorecmre 17550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-mre 17554
This theorem is referenced by:  acsfn1  17629  acsfn1c  17630  acsfn2  17631  acsfn1p  20715
  Copyright terms: Public domain W3C validator