MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreriincl Structured version   Visualization version   GIF version

Theorem mreriincl 16618
Description: The relative intersection of a family of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
mreriincl ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
Distinct variable groups:   𝑦,𝐼   𝑦,𝑋   𝑦,𝐶
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem mreriincl
StepHypRef Expression
1 riin0 4816 . . . 4 (𝐼 = ∅ → (𝑋 𝑦𝐼 𝑆) = 𝑋)
21adantl 475 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑋)
3 mre1cl 16614 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
43ad2antrr 717 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → 𝑋𝐶)
52, 4eqeltrd 2906 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 = ∅) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
6 mress 16613 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑆𝐶) → 𝑆𝑋)
76ex 403 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → (𝑆𝐶𝑆𝑋))
87ralimdv 3172 . . . . 5 (𝐶 ∈ (Moore‘𝑋) → (∀𝑦𝐼 𝑆𝐶 → ∀𝑦𝐼 𝑆𝑋))
98imp 397 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → ∀𝑦𝐼 𝑆𝑋)
10 riinn0 4817 . . . 4 ((∀𝑦𝐼 𝑆𝑋𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑦𝐼 𝑆)
119, 10sylan 575 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) = 𝑦𝐼 𝑆)
12 simpll 783 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝐶 ∈ (Moore‘𝑋))
13 simpr 479 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝐼 ≠ ∅)
14 simplr 785 . . . 4 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → ∀𝑦𝐼 𝑆𝐶)
15 mreiincl 16616 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝐼 ≠ ∅ ∧ ∀𝑦𝐼 𝑆𝐶) → 𝑦𝐼 𝑆𝐶)
1612, 13, 14, 15syl3anc 1494 . . 3 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → 𝑦𝐼 𝑆𝐶)
1711, 16eqeltrd 2906 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) ∧ 𝐼 ≠ ∅) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
185, 17pm2.61dane 3086 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑦𝐼 𝑆𝐶) → (𝑋 𝑦𝐼 𝑆) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999  wral 3117  cin 3797  wss 3798  c0 4146   ciin 4743  cfv 6127  Moorecmre 16602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-int 4700  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-mre 16606
This theorem is referenced by:  acsfn1  16681  acsfn1c  16682  acsfn2  16683  acsfn1p  38607
  Copyright terms: Public domain W3C validator