MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsublem Structured version   Visualization version   GIF version

Theorem alexsublem 23193
Description: Lemma for alexsub 23194. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
alexsub.1 (𝜑𝑋 ∈ UFL)
alexsub.2 (𝜑𝑋 = 𝐵)
alexsub.3 (𝜑𝐽 = (topGen‘(fi‘𝐵)))
alexsub.4 ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
alexsub.5 (𝜑𝐹 ∈ (UFil‘𝑋))
alexsub.6 (𝜑 → (𝐽 fLim 𝐹) = ∅)
Assertion
Ref Expression
alexsublem ¬ 𝜑
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦

Proof of Theorem alexsublem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eldif 3898 . . . . . . . . . 10 (𝑥 ∈ (𝑋 (𝐵𝐹)) ↔ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹)))
2 alexsub.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 = (topGen‘(fi‘𝐵)))
32eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦𝐽𝑦 ∈ (topGen‘(fi‘𝐵))))
43anbi1d 630 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦𝐽𝑥𝑦) ↔ (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦)))
54biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦))
65adantlr 712 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦))
7 tg2 22113 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (fi‘𝐵)(𝑥𝑧𝑧𝑦))
86, 7syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑧 ∈ (fi‘𝐵)(𝑥𝑧𝑧𝑦))
9 alexsub.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (UFil‘𝑋))
10 ufilfil 23053 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
119, 10syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (Fil‘𝑋))
1211ad3antrrr 727 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝐹 ∈ (Fil‘𝑋))
13 alexsub.2 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 = 𝐵)
149elfvexd 6810 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 ∈ V)
1513, 14eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 𝐵 ∈ V)
16 uniexb 7614 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1715, 16sylibr 233 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵 ∈ V)
18 elfi2 9171 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ V → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
1917, 18syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
2019adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
2111ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝐹 ∈ (Fil‘𝑋))
22 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → ¬ 𝑥 (𝐵𝐹))
23 intss1 4896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧𝑦 𝑦𝑧)
2423adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑦𝑧)
25 simplr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑥 𝑦)
2624, 25sseldd 3923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑥𝑧)
2726ad2antlr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑥𝑧)
28 eldifsn 4722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ↔ (𝑦 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦 ≠ ∅))
2928simplbi 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐵 ∩ Fin))
3029ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ (𝒫 𝐵 ∩ Fin))
31 elfpw 9119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑦𝐵𝑦 ∈ Fin))
3231simplbi 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) → 𝑦𝐵)
3330, 32syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐵)
3433sselda 3922 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) ∧ 𝑧𝑦) → 𝑧𝐵)
3534anasss 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → 𝑧𝐵)
3635anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → (𝑧𝐵 ∧ ¬ 𝑧𝐹))
37 eldif 3898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (𝐵𝐹) ↔ (𝑧𝐵 ∧ ¬ 𝑧𝐹))
3836, 37sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑧 ∈ (𝐵𝐹))
39 elunii 4846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥𝑧𝑧 ∈ (𝐵𝐹)) → 𝑥 (𝐵𝐹))
4027, 38, 39syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑥 (𝐵𝐹))
4140ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → (¬ 𝑧𝐹𝑥 (𝐵𝐹)))
4222, 41mt3d 148 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → 𝑧𝐹)
4342expr 457 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → (𝑧𝑦𝑧𝐹))
4443ssrdv 3928 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐹)
45 eldifsni 4725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
4645ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ≠ ∅)
47 elinel2 4131 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) → 𝑦 ∈ Fin)
4830, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ Fin)
49 elfir 9172 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → 𝑦 ∈ (fi‘𝐹))
5021, 44, 46, 48, 49syl13anc 1371 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ (fi‘𝐹))
51 filfi 23008 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
5221, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → (fi‘𝐹) = 𝐹)
5350, 52eleqtrd 2841 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐹)
5453expr 457 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})) → (𝑥 𝑦 𝑦𝐹))
55 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑥𝑧𝑥 𝑦))
56 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑧𝐹 𝑦𝐹))
5755, 56imbi12d 345 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((𝑥𝑧𝑧𝐹) ↔ (𝑥 𝑦 𝑦𝐹)))
5854, 57syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})) → (𝑧 = 𝑦 → (𝑥𝑧𝑧𝐹)))
5958rexlimdva 3212 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦 → (𝑥𝑧𝑧𝐹)))
6020, 59sylbid 239 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (𝑧 ∈ (fi‘𝐵) → (𝑥𝑧𝑧𝐹)))
6160imp32 419 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑥𝑧)) → 𝑧𝐹)
6261adantrrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝐹)
6362adantlr 712 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝐹)
64 elssuni 4873 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐽𝑦 𝐽)
6564ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦 𝐽)
66 fibas 22125 . . . . . . . . . . . . . . . . . . . . . . 23 (fi‘𝐵) ∈ TopBases
67 tgtopon 22119 . . . . . . . . . . . . . . . . . . . . . . 23 ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) ∈ (TopOn‘ (fi‘𝐵)))
6866, 67ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘(fi‘𝐵)) ∈ (TopOn‘ (fi‘𝐵))
692, 68eqeltrdi 2847 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ (TopOn‘ (fi‘𝐵)))
70 fiuni 9185 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ V → 𝐵 = (fi‘𝐵))
7117, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 𝐵 = (fi‘𝐵))
7213, 71eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 = (fi‘𝐵))
7372fveq2d 6780 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (TopOn‘𝑋) = (TopOn‘ (fi‘𝐵)))
7469, 73eleqtrrd 2842 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ (TopOn‘𝑋))
75 toponuni 22061 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
7674, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 = 𝐽)
7776ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑋 = 𝐽)
7865, 77sseqtrrd 3963 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
7978adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑦𝑋)
80 simprrr 779 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝑦)
81 filss 23002 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑧𝐹𝑦𝑋𝑧𝑦)) → 𝑦𝐹)
8212, 63, 79, 80, 81syl13anc 1371 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑦𝐹)
838, 82rexlimddv 3219 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
8483expr 457 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
8584ralrimiva 3103 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
8685expr 457 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (¬ 𝑥 (𝐵𝐹) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹)))
8786imdistanda 572 . . . . . . . . . 10 (𝜑 → ((𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹)) → (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
881, 87syl5bi 241 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋 (𝐵𝐹)) → (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
89 flimopn 23124 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9074, 11, 89syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9188, 90sylibrd 258 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋 (𝐵𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)))
9291ssrdv 3928 . . . . . . 7 (𝜑 → (𝑋 (𝐵𝐹)) ⊆ (𝐽 fLim 𝐹))
93 alexsub.6 . . . . . . 7 (𝜑 → (𝐽 fLim 𝐹) = ∅)
94 sseq0 4335 . . . . . . 7 (((𝑋 (𝐵𝐹)) ⊆ (𝐽 fLim 𝐹) ∧ (𝐽 fLim 𝐹) = ∅) → (𝑋 (𝐵𝐹)) = ∅)
9592, 93, 94syl2anc 584 . . . . . 6 (𝜑 → (𝑋 (𝐵𝐹)) = ∅)
96 ssdif0 4299 . . . . . 6 (𝑋 (𝐵𝐹) ↔ (𝑋 (𝐵𝐹)) = ∅)
9795, 96sylibr 233 . . . . 5 (𝜑𝑋 (𝐵𝐹))
98 difss 4067 . . . . . . 7 (𝐵𝐹) ⊆ 𝐵
9998unissi 4850 . . . . . 6 (𝐵𝐹) ⊆ 𝐵
10099, 13sseqtrrid 3975 . . . . 5 (𝜑 (𝐵𝐹) ⊆ 𝑋)
10197, 100eqssd 3939 . . . 4 (𝜑𝑋 = (𝐵𝐹))
102101, 98jctil 520 . . 3 (𝜑 → ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹)))
10317difexd 5255 . . . . 5 (𝜑 → (𝐵𝐹) ∈ V)
104103adantr 481 . . . 4 ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → (𝐵𝐹) ∈ V)
105 sseq1 3947 . . . . . . . 8 (𝑥 = (𝐵𝐹) → (𝑥𝐵 ↔ (𝐵𝐹) ⊆ 𝐵))
106 unieq 4852 . . . . . . . . 9 (𝑥 = (𝐵𝐹) → 𝑥 = (𝐵𝐹))
107106eqeq2d 2749 . . . . . . . 8 (𝑥 = (𝐵𝐹) → (𝑋 = 𝑥𝑋 = (𝐵𝐹)))
108105, 107anbi12d 631 . . . . . . 7 (𝑥 = (𝐵𝐹) → ((𝑥𝐵𝑋 = 𝑥) ↔ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))))
109108anbi2d 629 . . . . . 6 (𝑥 = (𝐵𝐹) → ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) ↔ (𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹)))))
110 pweq 4551 . . . . . . . 8 (𝑥 = (𝐵𝐹) → 𝒫 𝑥 = 𝒫 (𝐵𝐹))
111110ineq1d 4147 . . . . . . 7 (𝑥 = (𝐵𝐹) → (𝒫 𝑥 ∩ Fin) = (𝒫 (𝐵𝐹) ∩ Fin))
112111rexeqdv 3348 . . . . . 6 (𝑥 = (𝐵𝐹) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦))
113109, 112imbi12d 345 . . . . 5 (𝑥 = (𝐵𝐹) → (((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) ↔ ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)))
114 alexsub.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
115113, 114vtoclg 3504 . . . 4 ((𝐵𝐹) ∈ V → ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦))
116104, 115mpcom 38 . . 3 ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
117102, 116mpdan 684 . 2 (𝜑 → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
118 unieq 4852 . . . . . . 7 (𝑦 = ∅ → 𝑦 = ∅)
119 uni0 4871 . . . . . . 7 ∅ = ∅
120118, 119eqtrdi 2794 . . . . . 6 (𝑦 = ∅ → 𝑦 = ∅)
121120neeq2d 3004 . . . . 5 (𝑦 = ∅ → (𝑋 𝑦𝑋 ≠ ∅))
122 difssd 4068 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → (𝑋𝑧) ⊆ 𝑋)
123122ralrimivw 3104 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → ∀𝑧𝑦 (𝑋𝑧) ⊆ 𝑋)
124 riinn0 5014 . . . . . . . . . 10 ((∀𝑧𝑦 (𝑋𝑧) ⊆ 𝑋𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑧𝑦 (𝑋𝑧))
125123, 124sylan 580 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑧𝑦 (𝑋𝑧))
12614ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 ∈ V)
127126difexd 5255 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋𝑧) ∈ V)
128127ralrimivw 3104 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ∀𝑧𝑦 (𝑋𝑧) ∈ V)
129 dfiin2g 4964 . . . . . . . . . . 11 (∀𝑧𝑦 (𝑋𝑧) ∈ V → 𝑧𝑦 (𝑋𝑧) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)})
130128, 129syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋𝑧) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)})
131 eqid 2738 . . . . . . . . . . . 12 (𝑧𝑦 ↦ (𝑋𝑧)) = (𝑧𝑦 ↦ (𝑋𝑧))
132131rnmpt 5866 . . . . . . . . . . 11 ran (𝑧𝑦 ↦ (𝑋𝑧)) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)}
133132inteqi 4885 . . . . . . . . . 10 ran (𝑧𝑦 ↦ (𝑋𝑧)) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)}
134130, 133eqtr4di 2796 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋𝑧) = ran (𝑧𝑦 ↦ (𝑋𝑧)))
135125, 134eqtrd 2778 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = ran (𝑧𝑦 ↦ (𝑋𝑧)))
13611ad2antrr 723 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝐹 ∈ (Fil‘𝑋))
137 elfpw 9119 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) ↔ (𝑦 ⊆ (𝐵𝐹) ∧ 𝑦 ∈ Fin))
138137simplbi 498 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) → 𝑦 ⊆ (𝐵𝐹))
139138ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ⊆ (𝐵𝐹))
140139sselda 3922 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧 ∈ (𝐵𝐹))
141140eldifbd 3901 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → ¬ 𝑧𝐹)
1429ad3antrrr 727 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝐹 ∈ (UFil‘𝑋))
143139difss2d 4070 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦𝐵)
144143sselda 3922 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧𝐵)
145 elssuni 4873 . . . . . . . . . . . . . . 15 (𝑧𝐵𝑧 𝐵)
146144, 145syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧 𝐵)
14713ad3antrrr 727 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑋 = 𝐵)
148146, 147sseqtrrd 3963 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧𝑋)
149 ufilb 23055 . . . . . . . . . . . . 13 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑧𝑋) → (¬ 𝑧𝐹 ↔ (𝑋𝑧) ∈ 𝐹))
150142, 148, 149syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (¬ 𝑧𝐹 ↔ (𝑋𝑧) ∈ 𝐹))
151141, 150mpbid 231 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (𝑋𝑧) ∈ 𝐹)
152151fmpttd 6991 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑧𝑦 ↦ (𝑋𝑧)):𝑦𝐹)
153152frnd 6610 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ⊆ 𝐹)
154131, 151dmmptd 6580 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → dom (𝑧𝑦 ↦ (𝑋𝑧)) = 𝑦)
155 simpr 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ≠ ∅)
156154, 155eqnetrd 3011 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → dom (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
157 dm0rn0 5836 . . . . . . . . . . 11 (dom (𝑧𝑦 ↦ (𝑋𝑧)) = ∅ ↔ ran (𝑧𝑦 ↦ (𝑋𝑧)) = ∅)
158157necon3bii 2996 . . . . . . . . . 10 (dom (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅ ↔ ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
159156, 158sylib 217 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
160 elinel2 4131 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) → 𝑦 ∈ Fin)
161160ad2antlr 724 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Fin)
162 abrexfi 9117 . . . . . . . . . . 11 (𝑦 ∈ Fin → {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)} ∈ Fin)
163132, 162eqeltrid 2843 . . . . . . . . . 10 (𝑦 ∈ Fin → ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)
164161, 163syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)
165 filintn0 23010 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (ran (𝑧𝑦 ↦ (𝑋𝑧)) ⊆ 𝐹 ∧ ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅ ∧ ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
166136, 153, 159, 164, 165syl13anc 1371 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
167135, 166eqnetrd 3011 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) ≠ ∅)
168 disj3 4389 . . . . . . . 8 ((𝑋 𝑧𝑦 (𝑋𝑧)) = ∅ ↔ 𝑋 = (𝑋 𝑧𝑦 (𝑋𝑧)))
169168necon3bii 2996 . . . . . . 7 ((𝑋 𝑧𝑦 (𝑋𝑧)) ≠ ∅ ↔ 𝑋 ≠ (𝑋 𝑧𝑦 (𝑋𝑧)))
170167, 169sylib 217 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 ≠ (𝑋 𝑧𝑦 (𝑋𝑧)))
171 iundif2 5005 . . . . . . 7 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = (𝑋 𝑧𝑦 (𝑋𝑧))
172 dfss4 4194 . . . . . . . . . 10 (𝑧𝑋 ↔ (𝑋 ∖ (𝑋𝑧)) = 𝑧)
173148, 172sylib 217 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (𝑋 ∖ (𝑋𝑧)) = 𝑧)
174173iuneq2dv 4950 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = 𝑧𝑦 𝑧)
175 uniiun 4990 . . . . . . . 8 𝑦 = 𝑧𝑦 𝑧
176174, 175eqtr4di 2796 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = 𝑦)
177171, 176eqtr3id 2792 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑦)
178170, 177neeqtrd 3013 . . . . 5 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 𝑦)
17911adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝐹 ∈ (Fil‘𝑋))
180 filtop 23004 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
181 fileln0 22999 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋𝐹) → 𝑋 ≠ ∅)
182179, 180, 181syl2anc2 585 . . . . 5 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝑋 ≠ ∅)
183121, 178, 182pm2.61ne 3030 . . . 4 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝑋 𝑦)
184183neneqd 2948 . . 3 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → ¬ 𝑋 = 𝑦)
185184nrexdv 3197 . 2 (𝜑 → ¬ ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
186117, 185pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  Vcvv 3431  cdif 3885  cin 3887  wss 3888  c0 4258  𝒫 cpw 4535  {csn 4563   cuni 4841   cint 4881   ciun 4926   ciin 4927  cmpt 5159  dom cdm 5591  ran crn 5592  cfv 6435  (class class class)co 7277  Fincfn 8731  ficfi 9167  topGenctg 17146  TopOnctopon 22057  TopBasesctb 22093  Filcfil 22994  UFilcufil 23048  UFLcufl 23049   fLim cflim 23083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8295  df-er 8496  df-en 8732  df-dom 8733  df-fin 8735  df-fi 9168  df-topgen 17152  df-fbas 20592  df-top 22041  df-topon 22058  df-bases 22094  df-ntr 22169  df-nei 22247  df-fil 22995  df-ufil 23050  df-flim 23088
This theorem is referenced by:  alexsub  23194
  Copyright terms: Public domain W3C validator