MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsublem Structured version   Visualization version   GIF version

Theorem alexsublem 22913
Description: Lemma for alexsub 22914. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
alexsub.1 (𝜑𝑋 ∈ UFL)
alexsub.2 (𝜑𝑋 = 𝐵)
alexsub.3 (𝜑𝐽 = (topGen‘(fi‘𝐵)))
alexsub.4 ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
alexsub.5 (𝜑𝐹 ∈ (UFil‘𝑋))
alexsub.6 (𝜑 → (𝐽 fLim 𝐹) = ∅)
Assertion
Ref Expression
alexsublem ¬ 𝜑
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦

Proof of Theorem alexsublem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eldif 3867 . . . . . . . . . 10 (𝑥 ∈ (𝑋 (𝐵𝐹)) ↔ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹)))
2 alexsub.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 = (topGen‘(fi‘𝐵)))
32eleq2d 2819 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦𝐽𝑦 ∈ (topGen‘(fi‘𝐵))))
43anbi1d 633 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦𝐽𝑥𝑦) ↔ (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦)))
54biimpa 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦))
65adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦))
7 tg2 21834 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (fi‘𝐵)(𝑥𝑧𝑧𝑦))
86, 7syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑧 ∈ (fi‘𝐵)(𝑥𝑧𝑧𝑦))
9 alexsub.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (UFil‘𝑋))
10 ufilfil 22773 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
119, 10syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (Fil‘𝑋))
1211ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝐹 ∈ (Fil‘𝑋))
13 alexsub.2 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 = 𝐵)
149elfvexd 6740 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 ∈ V)
1513, 14eqeltrrd 2835 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 𝐵 ∈ V)
16 uniexb 7538 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1715, 16sylibr 237 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵 ∈ V)
18 elfi2 9019 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ V → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
1917, 18syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
2019adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
2111ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝐹 ∈ (Fil‘𝑋))
22 simplrr 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → ¬ 𝑥 (𝐵𝐹))
23 intss1 4864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧𝑦 𝑦𝑧)
2423adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑦𝑧)
25 simplr 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑥 𝑦)
2624, 25sseldd 3892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑥𝑧)
2726ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑥𝑧)
28 eldifsn 4690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ↔ (𝑦 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦 ≠ ∅))
2928simplbi 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐵 ∩ Fin))
3029ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ (𝒫 𝐵 ∩ Fin))
31 elfpw 8967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑦𝐵𝑦 ∈ Fin))
3231simplbi 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) → 𝑦𝐵)
3330, 32syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐵)
3433sselda 3891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) ∧ 𝑧𝑦) → 𝑧𝐵)
3534anasss 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → 𝑧𝐵)
3635anim1i 618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → (𝑧𝐵 ∧ ¬ 𝑧𝐹))
37 eldif 3867 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (𝐵𝐹) ↔ (𝑧𝐵 ∧ ¬ 𝑧𝐹))
3836, 37sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑧 ∈ (𝐵𝐹))
39 elunii 4814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥𝑧𝑧 ∈ (𝐵𝐹)) → 𝑥 (𝐵𝐹))
4027, 38, 39syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑥 (𝐵𝐹))
4140ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → (¬ 𝑧𝐹𝑥 (𝐵𝐹)))
4222, 41mt3d 150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → 𝑧𝐹)
4342expr 460 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → (𝑧𝑦𝑧𝐹))
4443ssrdv 3897 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐹)
45 eldifsni 4693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
4645ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ≠ ∅)
47 elinel2 4100 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) → 𝑦 ∈ Fin)
4830, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ Fin)
49 elfir 9020 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → 𝑦 ∈ (fi‘𝐹))
5021, 44, 46, 48, 49syl13anc 1374 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ (fi‘𝐹))
51 filfi 22728 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
5221, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → (fi‘𝐹) = 𝐹)
5350, 52eleqtrd 2836 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐹)
5453expr 460 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})) → (𝑥 𝑦 𝑦𝐹))
55 eleq2 2822 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑥𝑧𝑥 𝑦))
56 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑧𝐹 𝑦𝐹))
5755, 56imbi12d 348 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((𝑥𝑧𝑧𝐹) ↔ (𝑥 𝑦 𝑦𝐹)))
5854, 57syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})) → (𝑧 = 𝑦 → (𝑥𝑧𝑧𝐹)))
5958rexlimdva 3196 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦 → (𝑥𝑧𝑧𝐹)))
6020, 59sylbid 243 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (𝑧 ∈ (fi‘𝐵) → (𝑥𝑧𝑧𝐹)))
6160imp32 422 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑥𝑧)) → 𝑧𝐹)
6261adantrrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝐹)
6362adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝐹)
64 elssuni 4841 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐽𝑦 𝐽)
6564ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦 𝐽)
66 fibas 21846 . . . . . . . . . . . . . . . . . . . . . . 23 (fi‘𝐵) ∈ TopBases
67 tgtopon 21840 . . . . . . . . . . . . . . . . . . . . . . 23 ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) ∈ (TopOn‘ (fi‘𝐵)))
6866, 67ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘(fi‘𝐵)) ∈ (TopOn‘ (fi‘𝐵))
692, 68eqeltrdi 2842 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ (TopOn‘ (fi‘𝐵)))
70 fiuni 9033 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ V → 𝐵 = (fi‘𝐵))
7117, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 𝐵 = (fi‘𝐵))
7213, 71eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 = (fi‘𝐵))
7372fveq2d 6710 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (TopOn‘𝑋) = (TopOn‘ (fi‘𝐵)))
7469, 73eleqtrrd 2837 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ (TopOn‘𝑋))
75 toponuni 21783 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
7674, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 = 𝐽)
7776ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑋 = 𝐽)
7865, 77sseqtrrd 3932 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
7978adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑦𝑋)
80 simprrr 782 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝑦)
81 filss 22722 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑧𝐹𝑦𝑋𝑧𝑦)) → 𝑦𝐹)
8212, 63, 79, 80, 81syl13anc 1374 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑦𝐹)
838, 82rexlimddv 3203 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
8483expr 460 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
8584ralrimiva 3098 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
8685expr 460 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (¬ 𝑥 (𝐵𝐹) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹)))
8786imdistanda 575 . . . . . . . . . 10 (𝜑 → ((𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹)) → (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
881, 87syl5bi 245 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋 (𝐵𝐹)) → (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
89 flimopn 22844 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9074, 11, 89syl2anc 587 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9188, 90sylibrd 262 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋 (𝐵𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)))
9291ssrdv 3897 . . . . . . 7 (𝜑 → (𝑋 (𝐵𝐹)) ⊆ (𝐽 fLim 𝐹))
93 alexsub.6 . . . . . . 7 (𝜑 → (𝐽 fLim 𝐹) = ∅)
94 sseq0 4304 . . . . . . 7 (((𝑋 (𝐵𝐹)) ⊆ (𝐽 fLim 𝐹) ∧ (𝐽 fLim 𝐹) = ∅) → (𝑋 (𝐵𝐹)) = ∅)
9592, 93, 94syl2anc 587 . . . . . 6 (𝜑 → (𝑋 (𝐵𝐹)) = ∅)
96 ssdif0 4268 . . . . . 6 (𝑋 (𝐵𝐹) ↔ (𝑋 (𝐵𝐹)) = ∅)
9795, 96sylibr 237 . . . . 5 (𝜑𝑋 (𝐵𝐹))
98 difss 4036 . . . . . . 7 (𝐵𝐹) ⊆ 𝐵
9998unissi 4818 . . . . . 6 (𝐵𝐹) ⊆ 𝐵
10099, 13sseqtrrid 3944 . . . . 5 (𝜑 (𝐵𝐹) ⊆ 𝑋)
10197, 100eqssd 3908 . . . 4 (𝜑𝑋 = (𝐵𝐹))
102101, 98jctil 523 . . 3 (𝜑 → ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹)))
10317difexd 5211 . . . . 5 (𝜑 → (𝐵𝐹) ∈ V)
104103adantr 484 . . . 4 ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → (𝐵𝐹) ∈ V)
105 sseq1 3916 . . . . . . . 8 (𝑥 = (𝐵𝐹) → (𝑥𝐵 ↔ (𝐵𝐹) ⊆ 𝐵))
106 unieq 4820 . . . . . . . . 9 (𝑥 = (𝐵𝐹) → 𝑥 = (𝐵𝐹))
107106eqeq2d 2745 . . . . . . . 8 (𝑥 = (𝐵𝐹) → (𝑋 = 𝑥𝑋 = (𝐵𝐹)))
108105, 107anbi12d 634 . . . . . . 7 (𝑥 = (𝐵𝐹) → ((𝑥𝐵𝑋 = 𝑥) ↔ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))))
109108anbi2d 632 . . . . . 6 (𝑥 = (𝐵𝐹) → ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) ↔ (𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹)))))
110 pweq 4519 . . . . . . . 8 (𝑥 = (𝐵𝐹) → 𝒫 𝑥 = 𝒫 (𝐵𝐹))
111110ineq1d 4116 . . . . . . 7 (𝑥 = (𝐵𝐹) → (𝒫 𝑥 ∩ Fin) = (𝒫 (𝐵𝐹) ∩ Fin))
112111rexeqdv 3319 . . . . . 6 (𝑥 = (𝐵𝐹) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦))
113109, 112imbi12d 348 . . . . 5 (𝑥 = (𝐵𝐹) → (((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) ↔ ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)))
114 alexsub.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
115113, 114vtoclg 3474 . . . 4 ((𝐵𝐹) ∈ V → ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦))
116104, 115mpcom 38 . . 3 ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
117102, 116mpdan 687 . 2 (𝜑 → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
118 unieq 4820 . . . . . . 7 (𝑦 = ∅ → 𝑦 = ∅)
119 uni0 4839 . . . . . . 7 ∅ = ∅
120118, 119eqtrdi 2790 . . . . . 6 (𝑦 = ∅ → 𝑦 = ∅)
121120neeq2d 2995 . . . . 5 (𝑦 = ∅ → (𝑋 𝑦𝑋 ≠ ∅))
122 difssd 4037 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → (𝑋𝑧) ⊆ 𝑋)
123122ralrimivw 3099 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → ∀𝑧𝑦 (𝑋𝑧) ⊆ 𝑋)
124 riinn0 4981 . . . . . . . . . 10 ((∀𝑧𝑦 (𝑋𝑧) ⊆ 𝑋𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑧𝑦 (𝑋𝑧))
125123, 124sylan 583 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑧𝑦 (𝑋𝑧))
12614ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 ∈ V)
127126difexd 5211 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋𝑧) ∈ V)
128127ralrimivw 3099 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ∀𝑧𝑦 (𝑋𝑧) ∈ V)
129 dfiin2g 4931 . . . . . . . . . . 11 (∀𝑧𝑦 (𝑋𝑧) ∈ V → 𝑧𝑦 (𝑋𝑧) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)})
130128, 129syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋𝑧) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)})
131 eqid 2734 . . . . . . . . . . . 12 (𝑧𝑦 ↦ (𝑋𝑧)) = (𝑧𝑦 ↦ (𝑋𝑧))
132131rnmpt 5813 . . . . . . . . . . 11 ran (𝑧𝑦 ↦ (𝑋𝑧)) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)}
133132inteqi 4853 . . . . . . . . . 10 ran (𝑧𝑦 ↦ (𝑋𝑧)) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)}
134130, 133eqtr4di 2792 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋𝑧) = ran (𝑧𝑦 ↦ (𝑋𝑧)))
135125, 134eqtrd 2774 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = ran (𝑧𝑦 ↦ (𝑋𝑧)))
13611ad2antrr 726 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝐹 ∈ (Fil‘𝑋))
137 elfpw 8967 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) ↔ (𝑦 ⊆ (𝐵𝐹) ∧ 𝑦 ∈ Fin))
138137simplbi 501 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) → 𝑦 ⊆ (𝐵𝐹))
139138ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ⊆ (𝐵𝐹))
140139sselda 3891 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧 ∈ (𝐵𝐹))
141140eldifbd 3870 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → ¬ 𝑧𝐹)
1429ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝐹 ∈ (UFil‘𝑋))
143139difss2d 4039 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦𝐵)
144143sselda 3891 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧𝐵)
145 elssuni 4841 . . . . . . . . . . . . . . 15 (𝑧𝐵𝑧 𝐵)
146144, 145syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧 𝐵)
14713ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑋 = 𝐵)
148146, 147sseqtrrd 3932 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧𝑋)
149 ufilb 22775 . . . . . . . . . . . . 13 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑧𝑋) → (¬ 𝑧𝐹 ↔ (𝑋𝑧) ∈ 𝐹))
150142, 148, 149syl2anc 587 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (¬ 𝑧𝐹 ↔ (𝑋𝑧) ∈ 𝐹))
151141, 150mpbid 235 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (𝑋𝑧) ∈ 𝐹)
152151fmpttd 6921 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑧𝑦 ↦ (𝑋𝑧)):𝑦𝐹)
153152frnd 6542 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ⊆ 𝐹)
154131, 151dmmptd 6512 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → dom (𝑧𝑦 ↦ (𝑋𝑧)) = 𝑦)
155 simpr 488 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ≠ ∅)
156154, 155eqnetrd 3002 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → dom (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
157 dm0rn0 5783 . . . . . . . . . . 11 (dom (𝑧𝑦 ↦ (𝑋𝑧)) = ∅ ↔ ran (𝑧𝑦 ↦ (𝑋𝑧)) = ∅)
158157necon3bii 2987 . . . . . . . . . 10 (dom (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅ ↔ ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
159156, 158sylib 221 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
160 elinel2 4100 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) → 𝑦 ∈ Fin)
161160ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Fin)
162 abrexfi 8965 . . . . . . . . . . 11 (𝑦 ∈ Fin → {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)} ∈ Fin)
163132, 162eqeltrid 2838 . . . . . . . . . 10 (𝑦 ∈ Fin → ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)
164161, 163syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)
165 filintn0 22730 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (ran (𝑧𝑦 ↦ (𝑋𝑧)) ⊆ 𝐹 ∧ ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅ ∧ ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
166136, 153, 159, 164, 165syl13anc 1374 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
167135, 166eqnetrd 3002 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) ≠ ∅)
168 disj3 4358 . . . . . . . 8 ((𝑋 𝑧𝑦 (𝑋𝑧)) = ∅ ↔ 𝑋 = (𝑋 𝑧𝑦 (𝑋𝑧)))
169168necon3bii 2987 . . . . . . 7 ((𝑋 𝑧𝑦 (𝑋𝑧)) ≠ ∅ ↔ 𝑋 ≠ (𝑋 𝑧𝑦 (𝑋𝑧)))
170167, 169sylib 221 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 ≠ (𝑋 𝑧𝑦 (𝑋𝑧)))
171 iundif2 4972 . . . . . . 7 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = (𝑋 𝑧𝑦 (𝑋𝑧))
172 dfss4 4163 . . . . . . . . . 10 (𝑧𝑋 ↔ (𝑋 ∖ (𝑋𝑧)) = 𝑧)
173148, 172sylib 221 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (𝑋 ∖ (𝑋𝑧)) = 𝑧)
174173iuneq2dv 4918 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = 𝑧𝑦 𝑧)
175 uniiun 4957 . . . . . . . 8 𝑦 = 𝑧𝑦 𝑧
176174, 175eqtr4di 2792 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = 𝑦)
177171, 176eqtr3id 2788 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑦)
178170, 177neeqtrd 3004 . . . . 5 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 𝑦)
17911adantr 484 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝐹 ∈ (Fil‘𝑋))
180 filtop 22724 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
181 fileln0 22719 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋𝐹) → 𝑋 ≠ ∅)
182179, 180, 181syl2anc2 588 . . . . 5 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝑋 ≠ ∅)
183121, 178, 182pm2.61ne 3020 . . . 4 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝑋 𝑦)
184183neneqd 2940 . . 3 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → ¬ 𝑋 = 𝑦)
185184nrexdv 3182 . 2 (𝜑 → ¬ ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
186117, 185pm2.65i 197 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  {cab 2712  wne 2935  wral 3054  wrex 3055  Vcvv 3401  cdif 3854  cin 3856  wss 3857  c0 4227  𝒫 cpw 4503  {csn 4531   cuni 4809   cint 4849   ciun 4894   ciin 4895  cmpt 5124  dom cdm 5540  ran crn 5541  cfv 6369  (class class class)co 7202  Fincfn 8615  ficfi 9015  topGenctg 16914  TopOnctopon 21779  TopBasesctb 21814  Filcfil 22714  UFilcufil 22768  UFLcufl 22769   fLim cflim 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-fin 8619  df-fi 9016  df-topgen 16920  df-fbas 20332  df-top 21763  df-topon 21780  df-bases 21815  df-ntr 21889  df-nei 21967  df-fil 22715  df-ufil 22770  df-flim 22808
This theorem is referenced by:  alexsub  22914
  Copyright terms: Public domain W3C validator