MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsublem Structured version   Visualization version   GIF version

Theorem alexsublem 23395
Description: Lemma for alexsub 23396. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
alexsub.1 (𝜑𝑋 ∈ UFL)
alexsub.2 (𝜑𝑋 = 𝐵)
alexsub.3 (𝜑𝐽 = (topGen‘(fi‘𝐵)))
alexsub.4 ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
alexsub.5 (𝜑𝐹 ∈ (UFil‘𝑋))
alexsub.6 (𝜑 → (𝐽 fLim 𝐹) = ∅)
Assertion
Ref Expression
alexsublem ¬ 𝜑
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦

Proof of Theorem alexsublem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eldif 3920 . . . . . . . . . 10 (𝑥 ∈ (𝑋 (𝐵𝐹)) ↔ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹)))
2 alexsub.3 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 = (topGen‘(fi‘𝐵)))
32eleq2d 2823 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑦𝐽𝑦 ∈ (topGen‘(fi‘𝐵))))
43anbi1d 630 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑦𝐽𝑥𝑦) ↔ (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦)))
54biimpa 477 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦))
65adantlr 713 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦))
7 tg2 22315 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (topGen‘(fi‘𝐵)) ∧ 𝑥𝑦) → ∃𝑧 ∈ (fi‘𝐵)(𝑥𝑧𝑧𝑦))
86, 7syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → ∃𝑧 ∈ (fi‘𝐵)(𝑥𝑧𝑧𝑦))
9 alexsub.5 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ (UFil‘𝑋))
10 ufilfil 23255 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
119, 10syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 ∈ (Fil‘𝑋))
1211ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝐹 ∈ (Fil‘𝑋))
13 alexsub.2 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 = 𝐵)
149elfvexd 6881 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑋 ∈ V)
1513, 14eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 𝐵 ∈ V)
16 uniexb 7698 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐵 ∈ V ↔ 𝐵 ∈ V)
1715, 16sylibr 233 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐵 ∈ V)
18 elfi2 9350 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ V → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
1917, 18syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
2019adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (𝑧 ∈ (fi‘𝐵) ↔ ∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
2111ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝐹 ∈ (Fil‘𝑋))
22 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → ¬ 𝑥 (𝐵𝐹))
23 intss1 4924 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧𝑦 𝑦𝑧)
2423adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑦𝑧)
25 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑥 𝑦)
2624, 25sseldd 3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦) → 𝑥𝑧)
2726ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑥𝑧)
28 eldifsn 4747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ↔ (𝑦 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝑦 ≠ ∅))
2928simplbi 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐵 ∩ Fin))
3029ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ (𝒫 𝐵 ∩ Fin))
31 elfpw 9298 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) ↔ (𝑦𝐵𝑦 ∈ Fin))
3231simplbi 498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) → 𝑦𝐵)
3330, 32syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐵)
3433sselda 3944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) ∧ 𝑧𝑦) → 𝑧𝐵)
3534anasss 467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → 𝑧𝐵)
3635anim1i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → (𝑧𝐵 ∧ ¬ 𝑧𝐹))
37 eldif 3920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∈ (𝐵𝐹) ↔ (𝑧𝐵 ∧ ¬ 𝑧𝐹))
3836, 37sylibr 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑧 ∈ (𝐵𝐹))
39 elunii 4870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥𝑧𝑧 ∈ (𝐵𝐹)) → 𝑥 (𝐵𝐹))
4027, 38, 39syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) ∧ ¬ 𝑧𝐹) → 𝑥 (𝐵𝐹))
4140ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → (¬ 𝑧𝐹𝑥 (𝐵𝐹)))
4222, 41mt3d 148 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ ((𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦) ∧ 𝑧𝑦)) → 𝑧𝐹)
4342expr 457 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → (𝑧𝑦𝑧𝐹))
4443ssrdv 3950 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐹)
45 eldifsni 4750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
4645ad2antrl 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ≠ ∅)
47 elinel2 4156 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝒫 𝐵 ∩ Fin) → 𝑦 ∈ Fin)
4830, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ Fin)
49 elfir 9351 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → 𝑦 ∈ (fi‘𝐹))
5021, 44, 46, 48, 49syl13anc 1372 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦 ∈ (fi‘𝐹))
51 filfi 23210 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
5221, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → (fi‘𝐹) = 𝐹)
5350, 52eleqtrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅}) ∧ 𝑥 𝑦)) → 𝑦𝐹)
5453expr 457 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})) → (𝑥 𝑦 𝑦𝐹))
55 eleq2 2826 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑥𝑧𝑥 𝑦))
56 eleq1 2825 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → (𝑧𝐹 𝑦𝐹))
5755, 56imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → ((𝑥𝑧𝑧𝐹) ↔ (𝑥 𝑦 𝑦𝐹)))
5854, 57syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})) → (𝑧 = 𝑦 → (𝑥𝑧𝑧𝐹)))
5958rexlimdva 3152 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (∃𝑦 ∈ ((𝒫 𝐵 ∩ Fin) ∖ {∅})𝑧 = 𝑦 → (𝑥𝑧𝑧𝐹)))
6020, 59sylbid 239 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → (𝑧 ∈ (fi‘𝐵) → (𝑥𝑧𝑧𝐹)))
6160imp32 419 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑥𝑧)) → 𝑧𝐹)
6261adantrrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝐹)
6362adantlr 713 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝐹)
64 elssuni 4898 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐽𝑦 𝐽)
6564ad2antrl 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦 𝐽)
66 fibas 22327 . . . . . . . . . . . . . . . . . . . . . . 23 (fi‘𝐵) ∈ TopBases
67 tgtopon 22321 . . . . . . . . . . . . . . . . . . . . . . 23 ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) ∈ (TopOn‘ (fi‘𝐵)))
6866, 67ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘(fi‘𝐵)) ∈ (TopOn‘ (fi‘𝐵))
692, 68eqeltrdi 2846 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ (TopOn‘ (fi‘𝐵)))
70 fiuni 9364 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐵 ∈ V → 𝐵 = (fi‘𝐵))
7117, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 𝐵 = (fi‘𝐵))
7213, 71eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑋 = (fi‘𝐵))
7372fveq2d 6846 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (TopOn‘𝑋) = (TopOn‘ (fi‘𝐵)))
7469, 73eleqtrrd 2841 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐽 ∈ (TopOn‘𝑋))
75 toponuni 22263 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
7674, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑋 = 𝐽)
7776ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑋 = 𝐽)
7865, 77sseqtrrd 3985 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝑋)
7978adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑦𝑋)
80 simprrr 780 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑧𝑦)
81 filss 23204 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑧𝐹𝑦𝑋𝑧𝑦)) → 𝑦𝐹)
8212, 63, 79, 80, 81syl13anc 1372 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) ∧ (𝑧 ∈ (fi‘𝐵) ∧ (𝑥𝑧𝑧𝑦))) → 𝑦𝐹)
838, 82rexlimddv 3158 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
8483expr 457 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
8584ralrimiva 3143 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹))) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
8685expr 457 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (¬ 𝑥 (𝐵𝐹) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹)))
8786imdistanda 572 . . . . . . . . . 10 (𝜑 → ((𝑥𝑋 ∧ ¬ 𝑥 (𝐵𝐹)) → (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
881, 87biimtrid 241 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝑋 (𝐵𝐹)) → (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
89 flimopn 23326 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9074, 11, 89syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
9188, 90sylibrd 258 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝑋 (𝐵𝐹)) → 𝑥 ∈ (𝐽 fLim 𝐹)))
9291ssrdv 3950 . . . . . . 7 (𝜑 → (𝑋 (𝐵𝐹)) ⊆ (𝐽 fLim 𝐹))
93 alexsub.6 . . . . . . 7 (𝜑 → (𝐽 fLim 𝐹) = ∅)
94 sseq0 4359 . . . . . . 7 (((𝑋 (𝐵𝐹)) ⊆ (𝐽 fLim 𝐹) ∧ (𝐽 fLim 𝐹) = ∅) → (𝑋 (𝐵𝐹)) = ∅)
9592, 93, 94syl2anc 584 . . . . . 6 (𝜑 → (𝑋 (𝐵𝐹)) = ∅)
96 ssdif0 4323 . . . . . 6 (𝑋 (𝐵𝐹) ↔ (𝑋 (𝐵𝐹)) = ∅)
9795, 96sylibr 233 . . . . 5 (𝜑𝑋 (𝐵𝐹))
98 difss 4091 . . . . . . 7 (𝐵𝐹) ⊆ 𝐵
9998unissi 4874 . . . . . 6 (𝐵𝐹) ⊆ 𝐵
10099, 13sseqtrrid 3997 . . . . 5 (𝜑 (𝐵𝐹) ⊆ 𝑋)
10197, 100eqssd 3961 . . . 4 (𝜑𝑋 = (𝐵𝐹))
102101, 98jctil 520 . . 3 (𝜑 → ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹)))
10317difexd 5286 . . . . 5 (𝜑 → (𝐵𝐹) ∈ V)
104103adantr 481 . . . 4 ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → (𝐵𝐹) ∈ V)
105 sseq1 3969 . . . . . . . 8 (𝑥 = (𝐵𝐹) → (𝑥𝐵 ↔ (𝐵𝐹) ⊆ 𝐵))
106 unieq 4876 . . . . . . . . 9 (𝑥 = (𝐵𝐹) → 𝑥 = (𝐵𝐹))
107106eqeq2d 2747 . . . . . . . 8 (𝑥 = (𝐵𝐹) → (𝑋 = 𝑥𝑋 = (𝐵𝐹)))
108105, 107anbi12d 631 . . . . . . 7 (𝑥 = (𝐵𝐹) → ((𝑥𝐵𝑋 = 𝑥) ↔ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))))
109108anbi2d 629 . . . . . 6 (𝑥 = (𝐵𝐹) → ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) ↔ (𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹)))))
110 pweq 4574 . . . . . . . 8 (𝑥 = (𝐵𝐹) → 𝒫 𝑥 = 𝒫 (𝐵𝐹))
111110ineq1d 4171 . . . . . . 7 (𝑥 = (𝐵𝐹) → (𝒫 𝑥 ∩ Fin) = (𝒫 (𝐵𝐹) ∩ Fin))
112111rexeqdv 3314 . . . . . 6 (𝑥 = (𝐵𝐹) → (∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦 ↔ ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦))
113109, 112imbi12d 344 . . . . 5 (𝑥 = (𝐵𝐹) → (((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦) ↔ ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)))
114 alexsub.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
115113, 114vtoclg 3525 . . . 4 ((𝐵𝐹) ∈ V → ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦))
116104, 115mpcom 38 . . 3 ((𝜑 ∧ ((𝐵𝐹) ⊆ 𝐵𝑋 = (𝐵𝐹))) → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
117102, 116mpdan 685 . 2 (𝜑 → ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
118 unieq 4876 . . . . . . 7 (𝑦 = ∅ → 𝑦 = ∅)
119 uni0 4896 . . . . . . 7 ∅ = ∅
120118, 119eqtrdi 2792 . . . . . 6 (𝑦 = ∅ → 𝑦 = ∅)
121120neeq2d 3004 . . . . 5 (𝑦 = ∅ → (𝑋 𝑦𝑋 ≠ ∅))
122 difssd 4092 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → (𝑋𝑧) ⊆ 𝑋)
123122ralrimivw 3147 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → ∀𝑧𝑦 (𝑋𝑧) ⊆ 𝑋)
124 riinn0 5043 . . . . . . . . . 10 ((∀𝑧𝑦 (𝑋𝑧) ⊆ 𝑋𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑧𝑦 (𝑋𝑧))
125123, 124sylan 580 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑧𝑦 (𝑋𝑧))
12614ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 ∈ V)
127126difexd 5286 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋𝑧) ∈ V)
128127ralrimivw 3147 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ∀𝑧𝑦 (𝑋𝑧) ∈ V)
129 dfiin2g 4992 . . . . . . . . . . 11 (∀𝑧𝑦 (𝑋𝑧) ∈ V → 𝑧𝑦 (𝑋𝑧) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)})
130128, 129syl 17 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋𝑧) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)})
131 eqid 2736 . . . . . . . . . . . 12 (𝑧𝑦 ↦ (𝑋𝑧)) = (𝑧𝑦 ↦ (𝑋𝑧))
132131rnmpt 5910 . . . . . . . . . . 11 ran (𝑧𝑦 ↦ (𝑋𝑧)) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)}
133132inteqi 4911 . . . . . . . . . 10 ran (𝑧𝑦 ↦ (𝑋𝑧)) = {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)}
134130, 133eqtr4di 2794 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋𝑧) = ran (𝑧𝑦 ↦ (𝑋𝑧)))
135125, 134eqtrd 2776 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = ran (𝑧𝑦 ↦ (𝑋𝑧)))
13611ad2antrr 724 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝐹 ∈ (Fil‘𝑋))
137 elfpw 9298 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) ↔ (𝑦 ⊆ (𝐵𝐹) ∧ 𝑦 ∈ Fin))
138137simplbi 498 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) → 𝑦 ⊆ (𝐵𝐹))
139138ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ⊆ (𝐵𝐹))
140139sselda 3944 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧 ∈ (𝐵𝐹))
141140eldifbd 3923 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → ¬ 𝑧𝐹)
1429ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝐹 ∈ (UFil‘𝑋))
143139difss2d 4094 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦𝐵)
144143sselda 3944 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧𝐵)
145 elssuni 4898 . . . . . . . . . . . . . . 15 (𝑧𝐵𝑧 𝐵)
146144, 145syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧 𝐵)
14713ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑋 = 𝐵)
148146, 147sseqtrrd 3985 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → 𝑧𝑋)
149 ufilb 23257 . . . . . . . . . . . . 13 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑧𝑋) → (¬ 𝑧𝐹 ↔ (𝑋𝑧) ∈ 𝐹))
150142, 148, 149syl2anc 584 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (¬ 𝑧𝐹 ↔ (𝑋𝑧) ∈ 𝐹))
151141, 150mpbid 231 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (𝑋𝑧) ∈ 𝐹)
152151fmpttd 7063 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑧𝑦 ↦ (𝑋𝑧)):𝑦𝐹)
153152frnd 6676 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ⊆ 𝐹)
154131, 151dmmptd 6646 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → dom (𝑧𝑦 ↦ (𝑋𝑧)) = 𝑦)
155 simpr 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ≠ ∅)
156154, 155eqnetrd 3011 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → dom (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
157 dm0rn0 5880 . . . . . . . . . . 11 (dom (𝑧𝑦 ↦ (𝑋𝑧)) = ∅ ↔ ran (𝑧𝑦 ↦ (𝑋𝑧)) = ∅)
158157necon3bii 2996 . . . . . . . . . 10 (dom (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅ ↔ ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
159156, 158sylib 217 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
160 elinel2 4156 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin) → 𝑦 ∈ Fin)
161160ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑦 ∈ Fin)
162 abrexfi 9296 . . . . . . . . . . 11 (𝑦 ∈ Fin → {𝑥 ∣ ∃𝑧𝑦 𝑥 = (𝑋𝑧)} ∈ Fin)
163132, 162eqeltrid 2842 . . . . . . . . . 10 (𝑦 ∈ Fin → ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)
164161, 163syl 17 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)
165 filintn0 23212 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (ran (𝑧𝑦 ↦ (𝑋𝑧)) ⊆ 𝐹 ∧ ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅ ∧ ran (𝑧𝑦 ↦ (𝑋𝑧)) ∈ Fin)) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
166136, 153, 159, 164, 165syl13anc 1372 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → ran (𝑧𝑦 ↦ (𝑋𝑧)) ≠ ∅)
167135, 166eqnetrd 3011 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) ≠ ∅)
168 disj3 4413 . . . . . . . 8 ((𝑋 𝑧𝑦 (𝑋𝑧)) = ∅ ↔ 𝑋 = (𝑋 𝑧𝑦 (𝑋𝑧)))
169168necon3bii 2996 . . . . . . 7 ((𝑋 𝑧𝑦 (𝑋𝑧)) ≠ ∅ ↔ 𝑋 ≠ (𝑋 𝑧𝑦 (𝑋𝑧)))
170167, 169sylib 217 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 ≠ (𝑋 𝑧𝑦 (𝑋𝑧)))
171 iundif2 5034 . . . . . . 7 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = (𝑋 𝑧𝑦 (𝑋𝑧))
172 dfss4 4218 . . . . . . . . . 10 (𝑧𝑋 ↔ (𝑋 ∖ (𝑋𝑧)) = 𝑧)
173148, 172sylib 217 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) ∧ 𝑧𝑦) → (𝑋 ∖ (𝑋𝑧)) = 𝑧)
174173iuneq2dv 4978 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = 𝑧𝑦 𝑧)
175 uniiun 5018 . . . . . . . 8 𝑦 = 𝑧𝑦 𝑧
176174, 175eqtr4di 2794 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑧𝑦 (𝑋 ∖ (𝑋𝑧)) = 𝑦)
177171, 176eqtr3id 2790 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → (𝑋 𝑧𝑦 (𝑋𝑧)) = 𝑦)
178170, 177neeqtrd 3013 . . . . 5 (((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) ∧ 𝑦 ≠ ∅) → 𝑋 𝑦)
17911adantr 481 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝐹 ∈ (Fil‘𝑋))
180 filtop 23206 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
181 fileln0 23201 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑋𝐹) → 𝑋 ≠ ∅)
182179, 180, 181syl2anc2 585 . . . . 5 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝑋 ≠ ∅)
183121, 178, 182pm2.61ne 3030 . . . 4 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → 𝑋 𝑦)
184183neneqd 2948 . . 3 ((𝜑𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)) → ¬ 𝑋 = 𝑦)
185184nrexdv 3146 . 2 (𝜑 → ¬ ∃𝑦 ∈ (𝒫 (𝐵𝐹) ∩ Fin)𝑋 = 𝑦)
186117, 185pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586   cuni 4865   cint 4907   ciun 4954   ciin 4955  cmpt 5188  dom cdm 5633  ran crn 5634  cfv 6496  (class class class)co 7357  Fincfn 8883  ficfi 9346  topGenctg 17319  TopOnctopon 22259  TopBasesctb 22295  Filcfil 23196  UFilcufil 23250  UFLcufl 23251   fLim cflim 23285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-fin 8887  df-fi 9347  df-topgen 17325  df-fbas 20793  df-top 22243  df-topon 22260  df-bases 22296  df-ntr 22371  df-nei 22449  df-fil 23197  df-ufil 23252  df-flim 23290
This theorem is referenced by:  alexsub  23396
  Copyright terms: Public domain W3C validator