Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnemeet1 Structured version   Visualization version   GIF version

Theorem fnemeet1 36349
Description: The meet of a collection of equivalence classes of covers with respect to fineness. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnemeet1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝐴)
Distinct variable groups:   𝑦,𝑡,𝐴   𝑡,𝑆,𝑦   𝑡,𝑉   𝑡,𝑋,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem fnemeet1
StepHypRef Expression
1 unitg 22990 . . . . . . . 8 (𝑡𝑆 (topGen‘𝑡) = 𝑡)
21adantl 481 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → (topGen‘𝑡) = 𝑡)
3 unieq 4923 . . . . . . . . . 10 (𝑦 = 𝑡 𝑦 = 𝑡)
43eqeq2d 2746 . . . . . . . . 9 (𝑦 = 𝑡 → (𝑋 = 𝑦𝑋 = 𝑡))
54rspccva 3621 . . . . . . . 8 ((∀𝑦𝑆 𝑋 = 𝑦𝑡𝑆) → 𝑋 = 𝑡)
653ad2antl2 1185 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝑋 = 𝑡)
72, 6eqtr4d 2778 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → (topGen‘𝑡) = 𝑋)
8 eqimss 4054 . . . . . 6 ( (topGen‘𝑡) = 𝑋 (topGen‘𝑡) ⊆ 𝑋)
97, 8syl 17 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → (topGen‘𝑡) ⊆ 𝑋)
10 sspwuni 5105 . . . . 5 ((topGen‘𝑡) ⊆ 𝒫 𝑋 (topGen‘𝑡) ⊆ 𝑋)
119, 10sylibr 234 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → (topGen‘𝑡) ⊆ 𝒫 𝑋)
1211ralrimiva 3144 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ∀𝑡𝑆 (topGen‘𝑡) ⊆ 𝒫 𝑋)
13 ne0i 4347 . . . 4 (𝐴𝑆𝑆 ≠ ∅)
14133ad2ant3 1134 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ≠ ∅)
15 riinn0 5088 . . 3 ((∀𝑡𝑆 (topGen‘𝑡) ⊆ 𝒫 𝑋𝑆 ≠ ∅) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝑡𝑆 (topGen‘𝑡))
1612, 14, 15syl2anc 584 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝑡𝑆 (topGen‘𝑡))
17 simp3 1137 . . . . . . . 8 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴𝑆)
18 ssid 4018 . . . . . . . 8 (topGen‘𝐴) ⊆ (topGen‘𝐴)
19 fveq2 6907 . . . . . . . . . 10 (𝑡 = 𝐴 → (topGen‘𝑡) = (topGen‘𝐴))
2019sseq1d 4027 . . . . . . . . 9 (𝑡 = 𝐴 → ((topGen‘𝑡) ⊆ (topGen‘𝐴) ↔ (topGen‘𝐴) ⊆ (topGen‘𝐴)))
2120rspcev 3622 . . . . . . . 8 ((𝐴𝑆 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐴)) → ∃𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))
2217, 18, 21sylancl 586 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ∃𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))
23 iinss 5061 . . . . . . 7 (∃𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴) → 𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))
2422, 23syl 17 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))
2524unissd 4922 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))
26 unitg 22990 . . . . . 6 (𝐴𝑆 (topGen‘𝐴) = 𝐴)
27263ad2ant3 1134 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → (topGen‘𝐴) = 𝐴)
2825, 27sseqtrd 4036 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑡𝑆 (topGen‘𝑡) ⊆ 𝐴)
29 unieq 4923 . . . . . . . . . . . . 13 (𝑦 = 𝐴 𝑦 = 𝐴)
3029eqeq2d 2746 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑋 = 𝑦𝑋 = 𝐴))
3130rspccva 3621 . . . . . . . . . . 11 ((∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑋 = 𝐴)
32313adant1 1129 . . . . . . . . . 10 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑋 = 𝐴)
3332adantr 480 . . . . . . . . 9 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝑋 = 𝐴)
3433, 6eqtr3d 2777 . . . . . . . 8 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝐴 = 𝑡)
35 simpr 484 . . . . . . . . 9 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝑡𝑆)
36 ssid 4018 . . . . . . . . 9 𝑡𝑡
37 eltg3i 22984 . . . . . . . . 9 ((𝑡𝑆𝑡𝑡) → 𝑡 ∈ (topGen‘𝑡))
3835, 36, 37sylancl 586 . . . . . . . 8 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝑡 ∈ (topGen‘𝑡))
3934, 38eqeltrd 2839 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝐴 ∈ (topGen‘𝑡))
4039ralrimiva 3144 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ∀𝑡𝑆 𝐴 ∈ (topGen‘𝑡))
41 uniexg 7759 . . . . . . . 8 (𝐴𝑆 𝐴 ∈ V)
42413ad2ant3 1134 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 ∈ V)
43 eliin 5001 . . . . . . 7 ( 𝐴 ∈ V → ( 𝐴 𝑡𝑆 (topGen‘𝑡) ↔ ∀𝑡𝑆 𝐴 ∈ (topGen‘𝑡)))
4442, 43syl 17 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ( 𝐴 𝑡𝑆 (topGen‘𝑡) ↔ ∀𝑡𝑆 𝐴 ∈ (topGen‘𝑡)))
4540, 44mpbird 257 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 𝑡𝑆 (topGen‘𝑡))
46 elssuni 4942 . . . . 5 ( 𝐴 𝑡𝑆 (topGen‘𝑡) → 𝐴 𝑡𝑆 (topGen‘𝑡))
4745, 46syl 17 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 𝑡𝑆 (topGen‘𝑡))
4828, 47eqssd 4013 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑡𝑆 (topGen‘𝑡) = 𝐴)
49 eqid 2735 . . . 4 𝑡𝑆 (topGen‘𝑡) = 𝑡𝑆 (topGen‘𝑡)
50 eqid 2735 . . . 4 𝐴 = 𝐴
5149, 50isfne4 36323 . . 3 ( 𝑡𝑆 (topGen‘𝑡)Fne𝐴 ↔ ( 𝑡𝑆 (topGen‘𝑡) = 𝐴 𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴)))
5248, 24, 51sylanbrc 583 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑡𝑆 (topGen‘𝑡)Fne𝐴)
5316, 52eqbrtrd 5170 1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605   cuni 4912   ciin 4997   class class class wbr 5148  cfv 6563  topGenctg 17484  Fnecfne 36319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-topgen 17490  df-fne 36320
This theorem is referenced by:  fnemeet2  36350
  Copyright terms: Public domain W3C validator