Proof of Theorem fnemeet1
Step | Hyp | Ref
| Expression |
1 | | unitg 22025 |
. . . . . . . 8
⊢ (𝑡 ∈ 𝑆 → ∪
(topGen‘𝑡) = ∪ 𝑡) |
2 | 1 | adantl 481 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) ∧ 𝑡 ∈ 𝑆) → ∪
(topGen‘𝑡) = ∪ 𝑡) |
3 | | unieq 4847 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑡 → ∪ 𝑦 = ∪
𝑡) |
4 | 3 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑦 = 𝑡 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑡)) |
5 | 4 | rspccva 3551 |
. . . . . . . 8
⊢
((∀𝑦 ∈
𝑆 𝑋 = ∪ 𝑦 ∧ 𝑡 ∈ 𝑆) → 𝑋 = ∪ 𝑡) |
6 | 5 | 3ad2antl2 1184 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) ∧ 𝑡 ∈ 𝑆) → 𝑋 = ∪ 𝑡) |
7 | 2, 6 | eqtr4d 2781 |
. . . . . 6
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) ∧ 𝑡 ∈ 𝑆) → ∪
(topGen‘𝑡) = 𝑋) |
8 | | eqimss 3973 |
. . . . . 6
⊢ (∪ (topGen‘𝑡) = 𝑋 → ∪
(topGen‘𝑡) ⊆
𝑋) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) ∧ 𝑡 ∈ 𝑆) → ∪
(topGen‘𝑡) ⊆
𝑋) |
10 | | sspwuni 5025 |
. . . . 5
⊢
((topGen‘𝑡)
⊆ 𝒫 𝑋 ↔
∪ (topGen‘𝑡) ⊆ 𝑋) |
11 | 9, 10 | sylibr 233 |
. . . 4
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) ∧ 𝑡 ∈ 𝑆) → (topGen‘𝑡) ⊆ 𝒫 𝑋) |
12 | 11 | ralrimiva 3107 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∀𝑡 ∈ 𝑆 (topGen‘𝑡) ⊆ 𝒫 𝑋) |
13 | | ne0i 4265 |
. . . 4
⊢ (𝐴 ∈ 𝑆 → 𝑆 ≠ ∅) |
14 | 13 | 3ad2ant3 1133 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝑆 ≠ ∅) |
15 | | riinn0 5008 |
. . 3
⊢
((∀𝑡 ∈
𝑆 (topGen‘𝑡) ⊆ 𝒫 𝑋 ∧ 𝑆 ≠ ∅) → (𝒫 𝑋 ∩ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) = ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) |
16 | 12, 14, 15 | syl2anc 583 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → (𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) = ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)) |
17 | | simp3 1136 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ 𝑆) |
18 | | ssid 3939 |
. . . . . . . 8
⊢
(topGen‘𝐴)
⊆ (topGen‘𝐴) |
19 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑡 = 𝐴 → (topGen‘𝑡) = (topGen‘𝐴)) |
20 | 19 | sseq1d 3948 |
. . . . . . . . 9
⊢ (𝑡 = 𝐴 → ((topGen‘𝑡) ⊆ (topGen‘𝐴) ↔ (topGen‘𝐴) ⊆ (topGen‘𝐴))) |
21 | 20 | rspcev 3552 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐴)) → ∃𝑡 ∈ 𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴)) |
22 | 17, 18, 21 | sylancl 585 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∃𝑡 ∈ 𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴)) |
23 | | iinss 4982 |
. . . . . . 7
⊢
(∃𝑡 ∈
𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴) → ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴)) |
24 | 22, 23 | syl 17 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∩
𝑡 ∈ 𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴)) |
25 | 24 | unissd 4846 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪
∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) ⊆ ∪
(topGen‘𝐴)) |
26 | | unitg 22025 |
. . . . . 6
⊢ (𝐴 ∈ 𝑆 → ∪
(topGen‘𝐴) = ∪ 𝐴) |
27 | 26 | 3ad2ant3 1133 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪
(topGen‘𝐴) = ∪ 𝐴) |
28 | 25, 27 | sseqtrd 3957 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪
∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) ⊆ ∪ 𝐴) |
29 | | unieq 4847 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪
𝐴) |
30 | 29 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝐴)) |
31 | 30 | rspccva 3551 |
. . . . . . . . . . 11
⊢
((∀𝑦 ∈
𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝑋 = ∪ 𝐴) |
32 | 31 | 3adant1 1128 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → 𝑋 = ∪ 𝐴) |
33 | 32 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) ∧ 𝑡 ∈ 𝑆) → 𝑋 = ∪ 𝐴) |
34 | 33, 6 | eqtr3d 2780 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) ∧ 𝑡 ∈ 𝑆) → ∪ 𝐴 = ∪
𝑡) |
35 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) ∧ 𝑡 ∈ 𝑆) → 𝑡 ∈ 𝑆) |
36 | | ssid 3939 |
. . . . . . . . 9
⊢ 𝑡 ⊆ 𝑡 |
37 | | eltg3i 22019 |
. . . . . . . . 9
⊢ ((𝑡 ∈ 𝑆 ∧ 𝑡 ⊆ 𝑡) → ∪ 𝑡 ∈ (topGen‘𝑡)) |
38 | 35, 36, 37 | sylancl 585 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) ∧ 𝑡 ∈ 𝑆) → ∪ 𝑡 ∈ (topGen‘𝑡)) |
39 | 34, 38 | eqeltrd 2839 |
. . . . . . 7
⊢ (((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) ∧ 𝑡 ∈ 𝑆) → ∪ 𝐴 ∈ (topGen‘𝑡)) |
40 | 39 | ralrimiva 3107 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∀𝑡 ∈ 𝑆 ∪ 𝐴 ∈ (topGen‘𝑡)) |
41 | | uniexg 7571 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑆 → ∪ 𝐴 ∈ V) |
42 | 41 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝐴 ∈ V) |
43 | | eliin 4926 |
. . . . . . 7
⊢ (∪ 𝐴
∈ V → (∪ 𝐴 ∈ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡) ↔ ∀𝑡 ∈ 𝑆 ∪ 𝐴 ∈ (topGen‘𝑡))) |
44 | 42, 43 | syl 17 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → (∪ 𝐴 ∈ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) ↔ ∀𝑡 ∈ 𝑆 ∪ 𝐴 ∈ (topGen‘𝑡))) |
45 | 40, 44 | mpbird 256 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝐴 ∈ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) |
46 | | elssuni 4868 |
. . . . 5
⊢ (∪ 𝐴
∈ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) → ∪ 𝐴 ⊆ ∪ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) |
47 | 45, 46 | syl 17 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪ 𝐴 ⊆ ∪ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)) |
48 | 28, 47 | eqssd 3934 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∪
∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) = ∪ 𝐴) |
49 | | eqid 2738 |
. . . 4
⊢ ∪ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) = ∪ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) |
50 | | eqid 2738 |
. . . 4
⊢ ∪ 𝐴 =
∪ 𝐴 |
51 | 49, 50 | isfne4 34456 |
. . 3
⊢ (∩ 𝑡 ∈ 𝑆 (topGen‘𝑡)Fne𝐴 ↔ (∪
∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) = ∪ 𝐴 ∧ ∩ 𝑡 ∈ 𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))) |
52 | 48, 24, 51 | sylanbrc 582 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → ∩
𝑡 ∈ 𝑆 (topGen‘𝑡)Fne𝐴) |
53 | 16, 52 | eqbrtrd 5092 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ ∀𝑦 ∈ 𝑆 𝑋 = ∪ 𝑦 ∧ 𝐴 ∈ 𝑆) → (𝒫 𝑋 ∩ ∩
𝑡 ∈ 𝑆 (topGen‘𝑡))Fne𝐴) |