Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnemeet1 Structured version   Visualization version   GIF version

Theorem fnemeet1 34292
Description: The meet of a collection of equivalence classes of covers with respect to fineness. (Contributed by Jeff Hankins, 5-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnemeet1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝐴)
Distinct variable groups:   𝑦,𝑡,𝐴   𝑡,𝑆,𝑦   𝑡,𝑉   𝑡,𝑋,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem fnemeet1
StepHypRef Expression
1 unitg 21864 . . . . . . . 8 (𝑡𝑆 (topGen‘𝑡) = 𝑡)
21adantl 485 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → (topGen‘𝑡) = 𝑡)
3 unieq 4830 . . . . . . . . . 10 (𝑦 = 𝑡 𝑦 = 𝑡)
43eqeq2d 2748 . . . . . . . . 9 (𝑦 = 𝑡 → (𝑋 = 𝑦𝑋 = 𝑡))
54rspccva 3536 . . . . . . . 8 ((∀𝑦𝑆 𝑋 = 𝑦𝑡𝑆) → 𝑋 = 𝑡)
653ad2antl2 1188 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝑋 = 𝑡)
72, 6eqtr4d 2780 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → (topGen‘𝑡) = 𝑋)
8 eqimss 3957 . . . . . 6 ( (topGen‘𝑡) = 𝑋 (topGen‘𝑡) ⊆ 𝑋)
97, 8syl 17 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → (topGen‘𝑡) ⊆ 𝑋)
10 sspwuni 5008 . . . . 5 ((topGen‘𝑡) ⊆ 𝒫 𝑋 (topGen‘𝑡) ⊆ 𝑋)
119, 10sylibr 237 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → (topGen‘𝑡) ⊆ 𝒫 𝑋)
1211ralrimiva 3105 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ∀𝑡𝑆 (topGen‘𝑡) ⊆ 𝒫 𝑋)
13 ne0i 4249 . . . 4 (𝐴𝑆𝑆 ≠ ∅)
14133ad2ant3 1137 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑆 ≠ ∅)
15 riinn0 4991 . . 3 ((∀𝑡𝑆 (topGen‘𝑡) ⊆ 𝒫 𝑋𝑆 ≠ ∅) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝑡𝑆 (topGen‘𝑡))
1612, 14, 15syl2anc 587 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡)) = 𝑡𝑆 (topGen‘𝑡))
17 simp3 1140 . . . . . . . 8 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴𝑆)
18 ssid 3923 . . . . . . . 8 (topGen‘𝐴) ⊆ (topGen‘𝐴)
19 fveq2 6717 . . . . . . . . . 10 (𝑡 = 𝐴 → (topGen‘𝑡) = (topGen‘𝐴))
2019sseq1d 3932 . . . . . . . . 9 (𝑡 = 𝐴 → ((topGen‘𝑡) ⊆ (topGen‘𝐴) ↔ (topGen‘𝐴) ⊆ (topGen‘𝐴)))
2120rspcev 3537 . . . . . . . 8 ((𝐴𝑆 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐴)) → ∃𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))
2217, 18, 21sylancl 589 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ∃𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))
23 iinss 4965 . . . . . . 7 (∃𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴) → 𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))
2422, 23syl 17 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))
2524unissd 4829 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴))
26 unitg 21864 . . . . . 6 (𝐴𝑆 (topGen‘𝐴) = 𝐴)
27263ad2ant3 1137 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → (topGen‘𝐴) = 𝐴)
2825, 27sseqtrd 3941 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑡𝑆 (topGen‘𝑡) ⊆ 𝐴)
29 unieq 4830 . . . . . . . . . . . . 13 (𝑦 = 𝐴 𝑦 = 𝐴)
3029eqeq2d 2748 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (𝑋 = 𝑦𝑋 = 𝐴))
3130rspccva 3536 . . . . . . . . . . 11 ((∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑋 = 𝐴)
32313adant1 1132 . . . . . . . . . 10 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑋 = 𝐴)
3332adantr 484 . . . . . . . . 9 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝑋 = 𝐴)
3433, 6eqtr3d 2779 . . . . . . . 8 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝐴 = 𝑡)
35 simpr 488 . . . . . . . . 9 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝑡𝑆)
36 ssid 3923 . . . . . . . . 9 𝑡𝑡
37 eltg3i 21858 . . . . . . . . 9 ((𝑡𝑆𝑡𝑡) → 𝑡 ∈ (topGen‘𝑡))
3835, 36, 37sylancl 589 . . . . . . . 8 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝑡 ∈ (topGen‘𝑡))
3934, 38eqeltrd 2838 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) ∧ 𝑡𝑆) → 𝐴 ∈ (topGen‘𝑡))
4039ralrimiva 3105 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ∀𝑡𝑆 𝐴 ∈ (topGen‘𝑡))
41 uniexg 7528 . . . . . . . 8 (𝐴𝑆 𝐴 ∈ V)
42413ad2ant3 1137 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 ∈ V)
43 eliin 4909 . . . . . . 7 ( 𝐴 ∈ V → ( 𝐴 𝑡𝑆 (topGen‘𝑡) ↔ ∀𝑡𝑆 𝐴 ∈ (topGen‘𝑡)))
4442, 43syl 17 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → ( 𝐴 𝑡𝑆 (topGen‘𝑡) ↔ ∀𝑡𝑆 𝐴 ∈ (topGen‘𝑡)))
4540, 44mpbird 260 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 𝑡𝑆 (topGen‘𝑡))
46 elssuni 4851 . . . . 5 ( 𝐴 𝑡𝑆 (topGen‘𝑡) → 𝐴 𝑡𝑆 (topGen‘𝑡))
4745, 46syl 17 . . . 4 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝐴 𝑡𝑆 (topGen‘𝑡))
4828, 47eqssd 3918 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑡𝑆 (topGen‘𝑡) = 𝐴)
49 eqid 2737 . . . 4 𝑡𝑆 (topGen‘𝑡) = 𝑡𝑆 (topGen‘𝑡)
50 eqid 2737 . . . 4 𝐴 = 𝐴
5149, 50isfne4 34266 . . 3 ( 𝑡𝑆 (topGen‘𝑡)Fne𝐴 ↔ ( 𝑡𝑆 (topGen‘𝑡) = 𝐴 𝑡𝑆 (topGen‘𝑡) ⊆ (topGen‘𝐴)))
5248, 24, 51sylanbrc 586 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → 𝑡𝑆 (topGen‘𝑡)Fne𝐴)
5316, 52eqbrtrd 5075 1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝐴𝑆) → (𝒫 𝑋 𝑡𝑆 (topGen‘𝑡))Fne𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  Vcvv 3408  cin 3865  wss 3866  c0 4237  𝒫 cpw 4513   cuni 4819   ciin 4905   class class class wbr 5053  cfv 6380  topGenctg 16942  Fnecfne 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-topgen 16948  df-fne 34263
This theorem is referenced by:  fnemeet2  34293
  Copyright terms: Public domain W3C validator