MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riiner Structured version   Visualization version   GIF version

Theorem riiner 8567
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riiner (∀𝑥𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem riiner
StepHypRef Expression
1 xpider 8565 . . 3 (𝐵 × 𝐵) Er 𝐵
2 riin0 5011 . . . . 5 (𝐴 = ∅ → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵))
32adantl 482 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵))
4 ereq1 8493 . . . 4 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵))
53, 4syl 17 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵))
61, 5mpbiri 257 . 2 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
7 iiner 8566 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
87ancoms 459 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → 𝑥𝐴 𝑅 Er 𝐵)
9 erssxp 8509 . . . . . 6 (𝑅 Er 𝐵𝑅 ⊆ (𝐵 × 𝐵))
109ralimi 3087 . . . . 5 (∀𝑥𝐴 𝑅 Er 𝐵 → ∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵))
11 riinn0 5012 . . . . 5 ((∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
1210, 11sylan 580 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
13 ereq1 8493 . . . 4 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅 → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1412, 13syl 17 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
158, 14mpbird 256 . 2 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
166, 15pm2.61dane 3032 1 (∀𝑥𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wne 2943  wral 3064  cin 3886  wss 3887  c0 4257   ciin 4926   × cxp 5583   Er wer 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-iin 4928  df-br 5075  df-opab 5137  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-er 8486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator