MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riiner Structured version   Visualization version   GIF version

Theorem riiner 8537
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
riiner (∀𝑥𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem riiner
StepHypRef Expression
1 xpider 8535 . . 3 (𝐵 × 𝐵) Er 𝐵
2 riin0 5007 . . . . 5 (𝐴 = ∅ → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵))
32adantl 481 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵))
4 ereq1 8463 . . . 4 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = (𝐵 × 𝐵) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵))
53, 4syl 17 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵))
61, 5mpbiri 257 . 2 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 = ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
7 iiner 8536 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝑅 Er 𝐵) → 𝑥𝐴 𝑅 Er 𝐵)
87ancoms 458 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → 𝑥𝐴 𝑅 Er 𝐵)
9 erssxp 8479 . . . . . 6 (𝑅 Er 𝐵𝑅 ⊆ (𝐵 × 𝐵))
109ralimi 3086 . . . . 5 (∀𝑥𝐴 𝑅 Er 𝐵 → ∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵))
11 riinn0 5008 . . . . 5 ((∀𝑥𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
1210, 11sylan 579 . . . 4 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅)
13 ereq1 8463 . . . 4 (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) = 𝑥𝐴 𝑅 → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
1412, 13syl 17 . . 3 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → (((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵 𝑥𝐴 𝑅 Er 𝐵))
158, 14mpbird 256 . 2 ((∀𝑥𝐴 𝑅 Er 𝐵𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
166, 15pm2.61dane 3031 1 (∀𝑥𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ 𝑥𝐴 𝑅) Er 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wne 2942  wral 3063  cin 3882  wss 3883  c0 4253   ciin 4922   × cxp 5578   Er wer 8453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-iin 4924  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-er 8456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator