Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riiner | Structured version Visualization version GIF version |
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
riiner | ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpider 8565 | . . 3 ⊢ (𝐵 × 𝐵) Er 𝐵 | |
2 | riin0 5011 | . . . . 5 ⊢ (𝐴 = ∅ → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵)) | |
3 | 2 | adantl 482 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵)) |
4 | ereq1 8493 | . . . 4 ⊢ (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵)) |
6 | 1, 5 | mpbiri 257 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
7 | iiner 8566 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) | |
8 | 7 | ancoms 459 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) |
9 | erssxp 8509 | . . . . . 6 ⊢ (𝑅 Er 𝐵 → 𝑅 ⊆ (𝐵 × 𝐵)) | |
10 | 9 | ralimi 3087 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ∀𝑥 ∈ 𝐴 𝑅 ⊆ (𝐵 × 𝐵)) |
11 | riinn0 5012 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅) | |
12 | 10, 11 | sylan 580 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅) |
13 | ereq1 8493 | . . . 4 ⊢ (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅 → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) |
15 | 8, 14 | mpbird 256 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
16 | 6, 15 | pm2.61dane 3032 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ≠ wne 2943 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 ∅c0 4257 ∩ ciin 4926 × cxp 5583 Er wer 8483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-iin 4928 df-br 5075 df-opab 5137 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-er 8486 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |