![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riiner | Structured version Visualization version GIF version |
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
riiner | ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpider 8778 | . . 3 ⊢ (𝐵 × 𝐵) Er 𝐵 | |
2 | riin0 5084 | . . . . 5 ⊢ (𝐴 = ∅ → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵)) | |
3 | 2 | adantl 482 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵)) |
4 | ereq1 8706 | . . . 4 ⊢ (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵)) |
6 | 1, 5 | mpbiri 257 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
7 | iiner 8779 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) | |
8 | 7 | ancoms 459 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) |
9 | erssxp 8722 | . . . . . 6 ⊢ (𝑅 Er 𝐵 → 𝑅 ⊆ (𝐵 × 𝐵)) | |
10 | 9 | ralimi 3083 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ∀𝑥 ∈ 𝐴 𝑅 ⊆ (𝐵 × 𝐵)) |
11 | riinn0 5085 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅) | |
12 | 10, 11 | sylan 580 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅) |
13 | ereq1 8706 | . . . 4 ⊢ (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅 → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) |
15 | 8, 14 | mpbird 256 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
16 | 6, 15 | pm2.61dane 3029 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ≠ wne 2940 ∀wral 3061 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 ∩ ciin 4997 × cxp 5673 Er wer 8696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-iin 4999 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-er 8699 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |