![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riiner | Structured version Visualization version GIF version |
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
riiner | ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpider 8088 | . . 3 ⊢ (𝐵 × 𝐵) Er 𝐵 | |
2 | riin0 4816 | . . . . 5 ⊢ (𝐴 = ∅ → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵)) | |
3 | 2 | adantl 475 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵)) |
4 | ereq1 8021 | . . . 4 ⊢ (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵)) |
6 | 1, 5 | mpbiri 250 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
7 | iiner 8089 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) | |
8 | 7 | ancoms 452 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) |
9 | erssxp 8037 | . . . . . 6 ⊢ (𝑅 Er 𝐵 → 𝑅 ⊆ (𝐵 × 𝐵)) | |
10 | 9 | ralimi 3161 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ∀𝑥 ∈ 𝐴 𝑅 ⊆ (𝐵 × 𝐵)) |
11 | riinn0 4817 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅) | |
12 | 10, 11 | sylan 575 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅) |
13 | ereq1 8021 | . . . 4 ⊢ (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅 → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) |
15 | 8, 14 | mpbird 249 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
16 | 6, 15 | pm2.61dane 3086 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ≠ wne 2999 ∀wral 3117 ∩ cin 3797 ⊆ wss 3798 ∅c0 4146 ∩ ciin 4743 × cxp 5344 Er wer 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-iin 4745 df-br 4876 df-opab 4938 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-er 8014 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |