Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riiner | Structured version Visualization version GIF version |
Description: The relative intersection of a family of equivalence relations is an equivalence relation. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
riiner | ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpider 8535 | . . 3 ⊢ (𝐵 × 𝐵) Er 𝐵 | |
2 | riin0 5007 | . . . . 5 ⊢ (𝐴 = ∅ → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵)) | |
3 | 2 | adantl 481 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵)) |
4 | ereq1 8463 | . . . 4 ⊢ (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = (𝐵 × 𝐵) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ (𝐵 × 𝐵) Er 𝐵)) |
6 | 1, 5 | mpbiri 257 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 = ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
7 | iiner 8536 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝑅 Er 𝐵) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) | |
8 | 7 | ancoms 458 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵) |
9 | erssxp 8479 | . . . . . 6 ⊢ (𝑅 Er 𝐵 → 𝑅 ⊆ (𝐵 × 𝐵)) | |
10 | 9 | ralimi 3086 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ∀𝑥 ∈ 𝐴 𝑅 ⊆ (𝐵 × 𝐵)) |
11 | riinn0 5008 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 ⊆ (𝐵 × 𝐵) ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅) | |
12 | 10, 11 | sylan 579 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅) |
13 | ereq1 8463 | . . . 4 ⊢ (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) = ∩ 𝑥 ∈ 𝐴 𝑅 → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → (((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵 ↔ ∩ 𝑥 ∈ 𝐴 𝑅 Er 𝐵)) |
15 | 8, 14 | mpbird 256 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 ∧ 𝐴 ≠ ∅) → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
16 | 6, 15 | pm2.61dane 3031 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝑅 Er 𝐵 → ((𝐵 × 𝐵) ∩ ∩ 𝑥 ∈ 𝐴 𝑅) Er 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ≠ wne 2942 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∩ ciin 4922 × cxp 5578 Er wer 8453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-iin 4924 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-er 8456 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |