Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpcld | Structured version Visualization version GIF version |
Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
Ref | Expression |
---|---|
grpcld.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcld.p | ⊢ + = (+g‘𝐺) |
grpcld.r | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
grpcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcld.r | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | grpcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | grpcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | grpcld.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | grpcl 18634 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
7 | 1, 2, 3, 6 | syl3anc 1371 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 +gcplusg 17011 Grpcgrp 18626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-grp 18629 |
This theorem is referenced by: dfgrp3 18723 cphpyth 24429 |
Copyright terms: Public domain | W3C validator |