MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpcld Structured version   Visualization version   GIF version

Theorem grpcld 18935
Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
grpcld.b 𝐵 = (Base‘𝐺)
grpcld.p + = (+g𝐺)
grpcld.r (𝜑𝐺 ∈ Grp)
grpcld.x (𝜑𝑋𝐵)
grpcld.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpcld (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem grpcld
StepHypRef Expression
1 grpcld.r . 2 (𝜑𝐺 ∈ Grp)
2 grpcld.x . 2 (𝜑𝑋𝐵)
3 grpcld.y . 2 (𝜑𝑌𝐵)
4 grpcld.b . . 3 𝐵 = (Base‘𝐺)
5 grpcld.p . . 3 + = (+g𝐺)
64, 5grpcl 18929 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
71, 2, 3, 6syl3anc 1373 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Grpcgrp 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924
This theorem is referenced by:  grpraddf1o  19002  dfgrp3  19027  xpsinv  19048  xpsgrpsub  19049  nmzsubg  19153  eqger  19166  conjnmz  19240  ghmqusnsg  19270  ghmquskerlem3  19274  lringuplu  20509  rnglidl1  21198  rngqiprngimfo  21267  rngqiprngfulem3  21279  mhpaddcl  22094  psdmul  22109  evls1addd  22314  evls1maprhm  22319  rhmmpl  22326  cphpyth  25173  ringdi22  33231  rlocaddval  33268  rloccring  33270  rlocf1  33273  evl1deg1  33594  evl1deg2  33595  evl1deg3  33596  ply1degltlss  33611  q1pdir  33617  r1pcyc  33621  r1padd1  33622  r1plmhm  33624  algextdeglem8  33763  rtelextdg2lem  33765  cos9thpiminplylem6  33826  cos9thpiminply  33827  zrhcntr  34015  aks6d1c1p3  42128  aks5lem3a  42207  aks5lem5a  42209  grpcominv1  42506  rhmpsr  42550  mplmapghm  42554  evlsmaprhm  42568  evladdval  42573  selvadd  42586
  Copyright terms: Public domain W3C validator