| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcld | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| grpcld.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcld.p | ⊢ + = (+g‘𝐺) |
| grpcld.r | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcld.r | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | grpcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpcld.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | 4, 5 | grpcl 18864 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 Grpcgrp 18856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 |
| This theorem is referenced by: grpraddf1o 18937 dfgrp3 18962 xpsinv 18983 xpsgrpsub 18984 nmzsubg 19087 eqger 19100 conjnmz 19174 ghmqusnsg 19204 ghmquskerlem3 19208 lringuplu 20469 rnglidl1 21179 rngqiprngimfo 21248 rngqiprngfulem3 21260 mhpaddcl 22076 psdmul 22091 evls1addd 22296 evls1maprhm 22301 rhmmpl 22308 cphpyth 25153 conjga 33150 cntrval2 33151 ringdi22 33209 rlocaddval 33246 rloccring 33248 rlocf1 33251 evl1deg1 33550 evl1deg2 33551 evl1deg3 33552 ply1degltlss 33568 q1pdir 33574 r1pcyc 33578 r1padd1 33579 r1plmhm 33581 mplvrpmga 33586 mplvrpmmhm 33587 algextdeglem8 33748 rtelextdg2lem 33750 cos9thpiminplylem6 33811 cos9thpiminply 33812 zrhcntr 34003 aks6d1c1p3 42213 aks5lem3a 42292 aks5lem5a 42294 grpcominv1 42616 rhmpsr 42660 mplmapghm 42664 evlsmaprhm 42678 evladdval 42683 selvadd 42696 |
| Copyright terms: Public domain | W3C validator |