| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcld | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| grpcld.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcld.p | ⊢ + = (+g‘𝐺) |
| grpcld.r | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcld.r | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | grpcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpcld.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | 4, 5 | grpcl 18873 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 |
| This theorem is referenced by: grpraddf1o 18946 dfgrp3 18971 xpsinv 18992 xpsgrpsub 18993 nmzsubg 19097 eqger 19110 conjnmz 19184 ghmqusnsg 19214 ghmquskerlem3 19218 lringuplu 20453 rnglidl1 21142 rngqiprngimfo 21211 rngqiprngfulem3 21223 mhpaddcl 22038 psdmul 22053 evls1addd 22258 evls1maprhm 22263 rhmmpl 22270 cphpyth 25116 conjga 33127 cntrval2 33128 ringdi22 33182 rlocaddval 33219 rloccring 33221 rlocf1 33224 evl1deg1 33545 evl1deg2 33546 evl1deg3 33547 ply1degltlss 33562 q1pdir 33568 r1pcyc 33572 r1padd1 33573 r1plmhm 33575 algextdeglem8 33714 rtelextdg2lem 33716 cos9thpiminplylem6 33777 cos9thpiminply 33778 zrhcntr 33969 aks6d1c1p3 42098 aks5lem3a 42177 aks5lem5a 42179 grpcominv1 42496 rhmpsr 42540 mplmapghm 42544 evlsmaprhm 42558 evladdval 42563 selvadd 42576 |
| Copyright terms: Public domain | W3C validator |