MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpcld Structured version   Visualization version   GIF version

Theorem grpcld 18879
Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.)
Hypotheses
Ref Expression
grpcld.b 𝐵 = (Base‘𝐺)
grpcld.p + = (+g𝐺)
grpcld.r (𝜑𝐺 ∈ Grp)
grpcld.x (𝜑𝑋𝐵)
grpcld.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpcld (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)

Proof of Theorem grpcld
StepHypRef Expression
1 grpcld.r . 2 (𝜑𝐺 ∈ Grp)
2 grpcld.x . 2 (𝜑𝑋𝐵)
3 grpcld.y . 2 (𝜑𝑌𝐵)
4 grpcld.b . . 3 𝐵 = (Base‘𝐺)
5 grpcld.p . . 3 + = (+g𝐺)
64, 5grpcl 18873 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
71, 2, 3, 6syl3anc 1373 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Grpcgrp 18865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868
This theorem is referenced by:  grpraddf1o  18946  dfgrp3  18971  xpsinv  18992  xpsgrpsub  18993  nmzsubg  19097  eqger  19110  conjnmz  19184  ghmqusnsg  19214  ghmquskerlem3  19218  lringuplu  20453  rnglidl1  21142  rngqiprngimfo  21211  rngqiprngfulem3  21223  mhpaddcl  22038  psdmul  22053  evls1addd  22258  evls1maprhm  22263  rhmmpl  22270  cphpyth  25116  conjga  33127  cntrval2  33128  ringdi22  33182  rlocaddval  33219  rloccring  33221  rlocf1  33224  evl1deg1  33545  evl1deg2  33546  evl1deg3  33547  ply1degltlss  33562  q1pdir  33568  r1pcyc  33572  r1padd1  33573  r1plmhm  33575  algextdeglem8  33714  rtelextdg2lem  33716  cos9thpiminplylem6  33777  cos9thpiminply  33778  zrhcntr  33969  aks6d1c1p3  42098  aks5lem3a  42177  aks5lem5a  42179  grpcominv1  42496  rhmpsr  42540  mplmapghm  42544  evlsmaprhm  42558  evladdval  42563  selvadd  42576
  Copyright terms: Public domain W3C validator