![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpcld | Structured version Visualization version GIF version |
Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
Ref | Expression |
---|---|
grpcld.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcld.p | ⊢ + = (+g‘𝐺) |
grpcld.r | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
grpcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcld.r | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | grpcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | grpcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | grpcld.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | grpcl 18981 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
7 | 1, 2, 3, 6 | syl3anc 1371 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 |
This theorem is referenced by: grpraddf1o 19054 dfgrp3 19079 xpsinv 19100 xpsgrpsub 19101 nmzsubg 19205 eqger 19218 conjnmz 19292 ghmqusnsg 19322 ghmquskerlem3 19326 lringuplu 20570 rnglidl1 21265 rngqiprngimfo 21334 rngqiprngfulem3 21346 mhpaddcl 22178 psdmul 22193 evls1addd 22396 evls1maprhm 22401 rhmmpl 22408 cphpyth 25269 ringdi22 33211 rlocaddval 33240 rloccring 33242 rlocf1 33245 evl1deg1 33566 evl1deg2 33567 evl1deg3 33568 ply1degltlss 33582 q1pdir 33588 r1pcyc 33592 r1padd1 33593 r1plmhm 33595 algextdeglem8 33715 rtelextdg2lem 33717 aks6d1c1p3 42067 aks5lem3a 42146 aks5lem5a 42148 grpcominv1 42463 rhmpsr 42507 mplmapghm 42511 evlsmaprhm 42525 evladdval 42530 selvadd 42543 |
Copyright terms: Public domain | W3C validator |