| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcld | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| grpcld.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcld.p | ⊢ + = (+g‘𝐺) |
| grpcld.r | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcld.r | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | grpcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpcld.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | 4, 5 | grpcl 18929 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Grpcgrp 18921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 |
| This theorem is referenced by: grpraddf1o 19002 dfgrp3 19027 xpsinv 19048 xpsgrpsub 19049 nmzsubg 19153 eqger 19166 conjnmz 19240 ghmqusnsg 19270 ghmquskerlem3 19274 lringuplu 20509 rnglidl1 21198 rngqiprngimfo 21267 rngqiprngfulem3 21279 mhpaddcl 22094 psdmul 22109 evls1addd 22314 evls1maprhm 22319 rhmmpl 22326 cphpyth 25173 ringdi22 33231 rlocaddval 33268 rloccring 33270 rlocf1 33273 evl1deg1 33594 evl1deg2 33595 evl1deg3 33596 ply1degltlss 33611 q1pdir 33617 r1pcyc 33621 r1padd1 33622 r1plmhm 33624 algextdeglem8 33763 rtelextdg2lem 33765 cos9thpiminplylem6 33826 cos9thpiminply 33827 zrhcntr 34015 aks6d1c1p3 42128 aks5lem3a 42207 aks5lem5a 42209 grpcominv1 42506 rhmpsr 42550 mplmapghm 42554 evlsmaprhm 42568 evladdval 42573 selvadd 42586 |
| Copyright terms: Public domain | W3C validator |