| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpcld | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| grpcld.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpcld.p | ⊢ + = (+g‘𝐺) |
| grpcld.r | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpcld.r | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | grpcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpcld.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 6 | 4, 5 | grpcl 18846 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 Grpcgrp 18838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-ov 7344 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 |
| This theorem is referenced by: grpraddf1o 18919 dfgrp3 18944 xpsinv 18965 xpsgrpsub 18966 nmzsubg 19070 eqger 19083 conjnmz 19157 ghmqusnsg 19187 ghmquskerlem3 19191 lringuplu 20452 rnglidl1 21162 rngqiprngimfo 21231 rngqiprngfulem3 21243 mhpaddcl 22059 psdmul 22074 evls1addd 22279 evls1maprhm 22284 rhmmpl 22291 cphpyth 25136 conjga 33129 cntrval2 33130 ringdi22 33188 rlocaddval 33225 rloccring 33227 rlocf1 33230 evl1deg1 33529 evl1deg2 33530 evl1deg3 33531 ply1degltlss 33547 q1pdir 33553 r1pcyc 33557 r1padd1 33558 r1plmhm 33560 mplvrpmga 33565 mplvrpmmhm 33566 algextdeglem8 33727 rtelextdg2lem 33729 cos9thpiminplylem6 33790 cos9thpiminply 33791 zrhcntr 33982 aks6d1c1p3 42122 aks5lem3a 42201 aks5lem5a 42203 grpcominv1 42520 rhmpsr 42564 mplmapghm 42568 evlsmaprhm 42582 evladdval 42587 selvadd 42600 |
| Copyright terms: Public domain | W3C validator |