Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpcld | Structured version Visualization version GIF version |
Description: Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.) |
Ref | Expression |
---|---|
grpcld.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcld.p | ⊢ + = (+g‘𝐺) |
grpcld.r | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
grpcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcld.r | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
2 | grpcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | grpcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | grpcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | grpcld.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | 4, 5 | grpcl 18566 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
7 | 1, 2, 3, 6 | syl3anc 1369 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 Grpcgrp 18558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 |
This theorem is referenced by: cphpyth 24361 |
Copyright terms: Public domain | W3C validator |