| Step | Hyp | Ref
| Expression |
| 1 | | urpropd.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝑇)) |
| 2 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐵) → 𝐵 = (Base‘𝑇)) |
| 3 | | urpropd.2 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝑆)𝑦) = (𝑥(.r‘𝑇)𝑦)) |
| 4 | 3 | anasss 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝑆)𝑦) = (𝑥(.r‘𝑇)𝑦)) |
| 5 | 4 | ralrimivva 3187 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(.r‘𝑆)𝑦) = (𝑥(.r‘𝑇)𝑦)) |
| 6 | 5 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(.r‘𝑆)𝑦) = (𝑥(.r‘𝑇)𝑦)) |
| 7 | | oveq1 7412 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑒 → (𝑥(.r‘𝑆)𝑦) = (𝑒(.r‘𝑆)𝑦)) |
| 8 | | oveq1 7412 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑒 → (𝑥(.r‘𝑇)𝑦) = (𝑒(.r‘𝑇)𝑦)) |
| 9 | 7, 8 | eqeq12d 2751 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑒 → ((𝑥(.r‘𝑆)𝑦) = (𝑥(.r‘𝑇)𝑦) ↔ (𝑒(.r‘𝑆)𝑦) = (𝑒(.r‘𝑇)𝑦))) |
| 10 | | oveq2 7413 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑝 → (𝑒(.r‘𝑆)𝑦) = (𝑒(.r‘𝑆)𝑝)) |
| 11 | | oveq2 7413 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑝 → (𝑒(.r‘𝑇)𝑦) = (𝑒(.r‘𝑇)𝑝)) |
| 12 | 10, 11 | eqeq12d 2751 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑝 → ((𝑒(.r‘𝑆)𝑦) = (𝑒(.r‘𝑇)𝑦) ↔ (𝑒(.r‘𝑆)𝑝) = (𝑒(.r‘𝑇)𝑝))) |
| 13 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) → 𝑒 ∈ 𝐵) |
| 14 | | eqidd 2736 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) ∧ 𝑥 = 𝑒) → 𝐵 = 𝐵) |
| 15 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) → 𝑝 ∈ 𝐵) |
| 16 | 9, 12, 13, 14, 15 | rspc2vd 3922 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(.r‘𝑆)𝑦) = (𝑥(.r‘𝑇)𝑦) → (𝑒(.r‘𝑆)𝑝) = (𝑒(.r‘𝑇)𝑝))) |
| 17 | 6, 16 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) → (𝑒(.r‘𝑆)𝑝) = (𝑒(.r‘𝑇)𝑝)) |
| 18 | 17 | eqeq1d 2737 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) → ((𝑒(.r‘𝑆)𝑝) = 𝑝 ↔ (𝑒(.r‘𝑇)𝑝) = 𝑝)) |
| 19 | | oveq1 7412 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑝 → (𝑥(.r‘𝑆)𝑦) = (𝑝(.r‘𝑆)𝑦)) |
| 20 | | oveq1 7412 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑝 → (𝑥(.r‘𝑇)𝑦) = (𝑝(.r‘𝑇)𝑦)) |
| 21 | 19, 20 | eqeq12d 2751 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑝 → ((𝑥(.r‘𝑆)𝑦) = (𝑥(.r‘𝑇)𝑦) ↔ (𝑝(.r‘𝑆)𝑦) = (𝑝(.r‘𝑇)𝑦))) |
| 22 | | oveq2 7413 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑒 → (𝑝(.r‘𝑆)𝑦) = (𝑝(.r‘𝑆)𝑒)) |
| 23 | | oveq2 7413 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑒 → (𝑝(.r‘𝑇)𝑦) = (𝑝(.r‘𝑇)𝑒)) |
| 24 | 22, 23 | eqeq12d 2751 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑒 → ((𝑝(.r‘𝑆)𝑦) = (𝑝(.r‘𝑇)𝑦) ↔ (𝑝(.r‘𝑆)𝑒) = (𝑝(.r‘𝑇)𝑒))) |
| 25 | | eqidd 2736 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) ∧ 𝑥 = 𝑝) → 𝐵 = 𝐵) |
| 26 | 21, 24, 15, 25, 13 | rspc2vd 3922 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(.r‘𝑆)𝑦) = (𝑥(.r‘𝑇)𝑦) → (𝑝(.r‘𝑆)𝑒) = (𝑝(.r‘𝑇)𝑒))) |
| 27 | 6, 26 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) → (𝑝(.r‘𝑆)𝑒) = (𝑝(.r‘𝑇)𝑒)) |
| 28 | 27 | eqeq1d 2737 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) → ((𝑝(.r‘𝑆)𝑒) = 𝑝 ↔ (𝑝(.r‘𝑇)𝑒) = 𝑝)) |
| 29 | 18, 28 | anbi12d 632 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑒 ∈ 𝐵) ∧ 𝑝 ∈ 𝐵) → (((𝑒(.r‘𝑆)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑆)𝑒) = 𝑝) ↔ ((𝑒(.r‘𝑇)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑇)𝑒) = 𝑝))) |
| 30 | 2, 29 | raleqbidva 3311 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑒 ∈ 𝐵) → (∀𝑝 ∈ 𝐵 ((𝑒(.r‘𝑆)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑆)𝑒) = 𝑝) ↔ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r‘𝑇)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑇)𝑒) = 𝑝))) |
| 31 | 30 | pm5.32da 579 |
. . . . 5
⊢ (𝜑 → ((𝑒 ∈ 𝐵 ∧ ∀𝑝 ∈ 𝐵 ((𝑒(.r‘𝑆)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑆)𝑒) = 𝑝)) ↔ (𝑒 ∈ 𝐵 ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r‘𝑇)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑇)𝑒) = 𝑝)))) |
| 32 | 1 | eleq2d 2820 |
. . . . . 6
⊢ (𝜑 → (𝑒 ∈ 𝐵 ↔ 𝑒 ∈ (Base‘𝑇))) |
| 33 | 32 | anbi1d 631 |
. . . . 5
⊢ (𝜑 → ((𝑒 ∈ 𝐵 ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r‘𝑇)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑇)𝑒) = 𝑝)) ↔ (𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r‘𝑇)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑇)𝑒) = 𝑝)))) |
| 34 | 31, 33 | bitrd 279 |
. . . 4
⊢ (𝜑 → ((𝑒 ∈ 𝐵 ∧ ∀𝑝 ∈ 𝐵 ((𝑒(.r‘𝑆)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑆)𝑒) = 𝑝)) ↔ (𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r‘𝑇)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑇)𝑒) = 𝑝)))) |
| 35 | 34 | iotabidv 6515 |
. . 3
⊢ (𝜑 → (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑝 ∈ 𝐵 ((𝑒(.r‘𝑆)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑆)𝑒) = 𝑝))) = (℩𝑒(𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r‘𝑇)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑇)𝑒) = 𝑝)))) |
| 36 | | eqid 2735 |
. . . . 5
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
| 37 | | urpropd.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
| 38 | 36, 37 | mgpbas 20105 |
. . . 4
⊢ 𝐵 =
(Base‘(mulGrp‘𝑆)) |
| 39 | | eqid 2735 |
. . . . 5
⊢
(.r‘𝑆) = (.r‘𝑆) |
| 40 | 36, 39 | mgpplusg 20104 |
. . . 4
⊢
(.r‘𝑆) = (+g‘(mulGrp‘𝑆)) |
| 41 | | eqid 2735 |
. . . 4
⊢
(0g‘(mulGrp‘𝑆)) =
(0g‘(mulGrp‘𝑆)) |
| 42 | 38, 40, 41 | grpidval 18639 |
. . 3
⊢
(0g‘(mulGrp‘𝑆)) = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑝 ∈ 𝐵 ((𝑒(.r‘𝑆)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑆)𝑒) = 𝑝))) |
| 43 | | eqid 2735 |
. . . . 5
⊢
(mulGrp‘𝑇) =
(mulGrp‘𝑇) |
| 44 | | eqid 2735 |
. . . . 5
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 45 | 43, 44 | mgpbas 20105 |
. . . 4
⊢
(Base‘𝑇) =
(Base‘(mulGrp‘𝑇)) |
| 46 | | eqid 2735 |
. . . . 5
⊢
(.r‘𝑇) = (.r‘𝑇) |
| 47 | 43, 46 | mgpplusg 20104 |
. . . 4
⊢
(.r‘𝑇) = (+g‘(mulGrp‘𝑇)) |
| 48 | | eqid 2735 |
. . . 4
⊢
(0g‘(mulGrp‘𝑇)) =
(0g‘(mulGrp‘𝑇)) |
| 49 | 45, 47, 48 | grpidval 18639 |
. . 3
⊢
(0g‘(mulGrp‘𝑇)) = (℩𝑒(𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r‘𝑇)𝑝) = 𝑝 ∧ (𝑝(.r‘𝑇)𝑒) = 𝑝))) |
| 50 | 35, 42, 49 | 3eqtr4g 2795 |
. 2
⊢ (𝜑 →
(0g‘(mulGrp‘𝑆)) =
(0g‘(mulGrp‘𝑇))) |
| 51 | | eqid 2735 |
. . 3
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 52 | 36, 51 | ringidval 20143 |
. 2
⊢
(1r‘𝑆) = (0g‘(mulGrp‘𝑆)) |
| 53 | | eqid 2735 |
. . 3
⊢
(1r‘𝑇) = (1r‘𝑇) |
| 54 | 43, 53 | ringidval 20143 |
. 2
⊢
(1r‘𝑇) = (0g‘(mulGrp‘𝑇)) |
| 55 | 50, 52, 54 | 3eqtr4g 2795 |
1
⊢ (𝜑 → (1r‘𝑆) = (1r‘𝑇)) |