Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  urpropd Structured version   Visualization version   GIF version

Theorem urpropd 32309
Description: Sufficient condition for ring unities to be equal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
urpropd.b 𝐵 = (Base‘𝑆)
urpropd.s (𝜑𝑆𝑉)
urpropd.t (𝜑𝑇𝑊)
urpropd.1 (𝜑𝐵 = (Base‘𝑇))
urpropd.2 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦))
Assertion
Ref Expression
urpropd (𝜑 → (1r𝑆) = (1r𝑇))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem urpropd
Dummy variables 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 urpropd.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑇))
21adantr 481 . . . . . . 7 ((𝜑𝑒𝐵) → 𝐵 = (Base‘𝑇))
3 urpropd.2 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦))
43anasss 467 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦))
54ralrimivva 3200 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦))
65ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦))
7 oveq1 7401 . . . . . . . . . . . 12 (𝑥 = 𝑒 → (𝑥(.r𝑆)𝑦) = (𝑒(.r𝑆)𝑦))
8 oveq1 7401 . . . . . . . . . . . 12 (𝑥 = 𝑒 → (𝑥(.r𝑇)𝑦) = (𝑒(.r𝑇)𝑦))
97, 8eqeq12d 2748 . . . . . . . . . . 11 (𝑥 = 𝑒 → ((𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦) ↔ (𝑒(.r𝑆)𝑦) = (𝑒(.r𝑇)𝑦)))
10 oveq2 7402 . . . . . . . . . . . 12 (𝑦 = 𝑝 → (𝑒(.r𝑆)𝑦) = (𝑒(.r𝑆)𝑝))
11 oveq2 7402 . . . . . . . . . . . 12 (𝑦 = 𝑝 → (𝑒(.r𝑇)𝑦) = (𝑒(.r𝑇)𝑝))
1210, 11eqeq12d 2748 . . . . . . . . . . 11 (𝑦 = 𝑝 → ((𝑒(.r𝑆)𝑦) = (𝑒(.r𝑇)𝑦) ↔ (𝑒(.r𝑆)𝑝) = (𝑒(.r𝑇)𝑝)))
13 simplr 767 . . . . . . . . . . 11 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → 𝑒𝐵)
14 eqidd 2733 . . . . . . . . . . 11 ((((𝜑𝑒𝐵) ∧ 𝑝𝐵) ∧ 𝑥 = 𝑒) → 𝐵 = 𝐵)
15 simpr 485 . . . . . . . . . . 11 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
169, 12, 13, 14, 15rspc2vd 3941 . . . . . . . . . 10 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦) → (𝑒(.r𝑆)𝑝) = (𝑒(.r𝑇)𝑝)))
176, 16mpd 15 . . . . . . . . 9 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → (𝑒(.r𝑆)𝑝) = (𝑒(.r𝑇)𝑝))
1817eqeq1d 2734 . . . . . . . 8 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → ((𝑒(.r𝑆)𝑝) = 𝑝 ↔ (𝑒(.r𝑇)𝑝) = 𝑝))
19 oveq1 7401 . . . . . . . . . . . 12 (𝑥 = 𝑝 → (𝑥(.r𝑆)𝑦) = (𝑝(.r𝑆)𝑦))
20 oveq1 7401 . . . . . . . . . . . 12 (𝑥 = 𝑝 → (𝑥(.r𝑇)𝑦) = (𝑝(.r𝑇)𝑦))
2119, 20eqeq12d 2748 . . . . . . . . . . 11 (𝑥 = 𝑝 → ((𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦) ↔ (𝑝(.r𝑆)𝑦) = (𝑝(.r𝑇)𝑦)))
22 oveq2 7402 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (𝑝(.r𝑆)𝑦) = (𝑝(.r𝑆)𝑒))
23 oveq2 7402 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (𝑝(.r𝑇)𝑦) = (𝑝(.r𝑇)𝑒))
2422, 23eqeq12d 2748 . . . . . . . . . . 11 (𝑦 = 𝑒 → ((𝑝(.r𝑆)𝑦) = (𝑝(.r𝑇)𝑦) ↔ (𝑝(.r𝑆)𝑒) = (𝑝(.r𝑇)𝑒)))
25 eqidd 2733 . . . . . . . . . . 11 ((((𝜑𝑒𝐵) ∧ 𝑝𝐵) ∧ 𝑥 = 𝑝) → 𝐵 = 𝐵)
2621, 24, 15, 25, 13rspc2vd 3941 . . . . . . . . . 10 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦) → (𝑝(.r𝑆)𝑒) = (𝑝(.r𝑇)𝑒)))
276, 26mpd 15 . . . . . . . . 9 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → (𝑝(.r𝑆)𝑒) = (𝑝(.r𝑇)𝑒))
2827eqeq1d 2734 . . . . . . . 8 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → ((𝑝(.r𝑆)𝑒) = 𝑝 ↔ (𝑝(.r𝑇)𝑒) = 𝑝))
2918, 28anbi12d 631 . . . . . . 7 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → (((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝) ↔ ((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝)))
302, 29raleqbidva 3327 . . . . . 6 ((𝜑𝑒𝐵) → (∀𝑝𝐵 ((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝) ↔ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝)))
3130pm5.32da 579 . . . . 5 (𝜑 → ((𝑒𝐵 ∧ ∀𝑝𝐵 ((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝)) ↔ (𝑒𝐵 ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝))))
321eleq2d 2819 . . . . . 6 (𝜑 → (𝑒𝐵𝑒 ∈ (Base‘𝑇)))
3332anbi1d 630 . . . . 5 (𝜑 → ((𝑒𝐵 ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝)) ↔ (𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝))))
3431, 33bitrd 278 . . . 4 (𝜑 → ((𝑒𝐵 ∧ ∀𝑝𝐵 ((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝)) ↔ (𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝))))
3534iotabidv 6517 . . 3 (𝜑 → (℩𝑒(𝑒𝐵 ∧ ∀𝑝𝐵 ((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝))) = (℩𝑒(𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝))))
36 eqid 2732 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
37 urpropd.b . . . . 5 𝐵 = (Base‘𝑆)
3836, 37mgpbas 19954 . . . 4 𝐵 = (Base‘(mulGrp‘𝑆))
39 eqid 2732 . . . . 5 (.r𝑆) = (.r𝑆)
4036, 39mgpplusg 19952 . . . 4 (.r𝑆) = (+g‘(mulGrp‘𝑆))
41 eqid 2732 . . . 4 (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆))
4238, 40, 41grpidval 18564 . . 3 (0g‘(mulGrp‘𝑆)) = (℩𝑒(𝑒𝐵 ∧ ∀𝑝𝐵 ((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝)))
43 eqid 2732 . . . . 5 (mulGrp‘𝑇) = (mulGrp‘𝑇)
44 eqid 2732 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
4543, 44mgpbas 19954 . . . 4 (Base‘𝑇) = (Base‘(mulGrp‘𝑇))
46 eqid 2732 . . . . 5 (.r𝑇) = (.r𝑇)
4743, 46mgpplusg 19952 . . . 4 (.r𝑇) = (+g‘(mulGrp‘𝑇))
48 eqid 2732 . . . 4 (0g‘(mulGrp‘𝑇)) = (0g‘(mulGrp‘𝑇))
4945, 47, 48grpidval 18564 . . 3 (0g‘(mulGrp‘𝑇)) = (℩𝑒(𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝)))
5035, 42, 493eqtr4g 2797 . 2 (𝜑 → (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑇)))
51 eqid 2732 . . 3 (1r𝑆) = (1r𝑆)
5236, 51ringidval 19967 . 2 (1r𝑆) = (0g‘(mulGrp‘𝑆))
53 eqid 2732 . . 3 (1r𝑇) = (1r𝑇)
5443, 53ringidval 19967 . 2 (1r𝑇) = (0g‘(mulGrp‘𝑇))
5550, 52, 543eqtr4g 2797 1 (𝜑 → (1r𝑆) = (1r𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  cio 6483  cfv 6533  (class class class)co 7394  Basecbs 17128  .rcmulr 17182  0gc0g 17369  mulGrpcmgp 19948  1rcur 19965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-plusg 17194  df-0g 17371  df-mgp 19949  df-ur 19966
This theorem is referenced by:  opprqus1r  32516
  Copyright terms: Public domain W3C validator