Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  urpropd Structured version   Visualization version   GIF version

Theorem urpropd 33156
Description: Sufficient condition for ring unities to be equal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
urpropd.b 𝐵 = (Base‘𝑆)
urpropd.s (𝜑𝑆𝑉)
urpropd.t (𝜑𝑇𝑊)
urpropd.1 (𝜑𝐵 = (Base‘𝑇))
urpropd.2 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦))
Assertion
Ref Expression
urpropd (𝜑 → (1r𝑆) = (1r𝑇))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem urpropd
Dummy variables 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 urpropd.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑇))
21adantr 480 . . . . . . 7 ((𝜑𝑒𝐵) → 𝐵 = (Base‘𝑇))
3 urpropd.2 . . . . . . . . . . . . 13 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦))
43anasss 466 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦))
54ralrimivva 3178 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦))
65ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦))
7 oveq1 7376 . . . . . . . . . . . 12 (𝑥 = 𝑒 → (𝑥(.r𝑆)𝑦) = (𝑒(.r𝑆)𝑦))
8 oveq1 7376 . . . . . . . . . . . 12 (𝑥 = 𝑒 → (𝑥(.r𝑇)𝑦) = (𝑒(.r𝑇)𝑦))
97, 8eqeq12d 2745 . . . . . . . . . . 11 (𝑥 = 𝑒 → ((𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦) ↔ (𝑒(.r𝑆)𝑦) = (𝑒(.r𝑇)𝑦)))
10 oveq2 7377 . . . . . . . . . . . 12 (𝑦 = 𝑝 → (𝑒(.r𝑆)𝑦) = (𝑒(.r𝑆)𝑝))
11 oveq2 7377 . . . . . . . . . . . 12 (𝑦 = 𝑝 → (𝑒(.r𝑇)𝑦) = (𝑒(.r𝑇)𝑝))
1210, 11eqeq12d 2745 . . . . . . . . . . 11 (𝑦 = 𝑝 → ((𝑒(.r𝑆)𝑦) = (𝑒(.r𝑇)𝑦) ↔ (𝑒(.r𝑆)𝑝) = (𝑒(.r𝑇)𝑝)))
13 simplr 768 . . . . . . . . . . 11 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → 𝑒𝐵)
14 eqidd 2730 . . . . . . . . . . 11 ((((𝜑𝑒𝐵) ∧ 𝑝𝐵) ∧ 𝑥 = 𝑒) → 𝐵 = 𝐵)
15 simpr 484 . . . . . . . . . . 11 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
169, 12, 13, 14, 15rspc2vd 3907 . . . . . . . . . 10 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦) → (𝑒(.r𝑆)𝑝) = (𝑒(.r𝑇)𝑝)))
176, 16mpd 15 . . . . . . . . 9 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → (𝑒(.r𝑆)𝑝) = (𝑒(.r𝑇)𝑝))
1817eqeq1d 2731 . . . . . . . 8 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → ((𝑒(.r𝑆)𝑝) = 𝑝 ↔ (𝑒(.r𝑇)𝑝) = 𝑝))
19 oveq1 7376 . . . . . . . . . . . 12 (𝑥 = 𝑝 → (𝑥(.r𝑆)𝑦) = (𝑝(.r𝑆)𝑦))
20 oveq1 7376 . . . . . . . . . . . 12 (𝑥 = 𝑝 → (𝑥(.r𝑇)𝑦) = (𝑝(.r𝑇)𝑦))
2119, 20eqeq12d 2745 . . . . . . . . . . 11 (𝑥 = 𝑝 → ((𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦) ↔ (𝑝(.r𝑆)𝑦) = (𝑝(.r𝑇)𝑦)))
22 oveq2 7377 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (𝑝(.r𝑆)𝑦) = (𝑝(.r𝑆)𝑒))
23 oveq2 7377 . . . . . . . . . . . 12 (𝑦 = 𝑒 → (𝑝(.r𝑇)𝑦) = (𝑝(.r𝑇)𝑒))
2422, 23eqeq12d 2745 . . . . . . . . . . 11 (𝑦 = 𝑒 → ((𝑝(.r𝑆)𝑦) = (𝑝(.r𝑇)𝑦) ↔ (𝑝(.r𝑆)𝑒) = (𝑝(.r𝑇)𝑒)))
25 eqidd 2730 . . . . . . . . . . 11 ((((𝜑𝑒𝐵) ∧ 𝑝𝐵) ∧ 𝑥 = 𝑝) → 𝐵 = 𝐵)
2621, 24, 15, 25, 13rspc2vd 3907 . . . . . . . . . 10 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥(.r𝑆)𝑦) = (𝑥(.r𝑇)𝑦) → (𝑝(.r𝑆)𝑒) = (𝑝(.r𝑇)𝑒)))
276, 26mpd 15 . . . . . . . . 9 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → (𝑝(.r𝑆)𝑒) = (𝑝(.r𝑇)𝑒))
2827eqeq1d 2731 . . . . . . . 8 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → ((𝑝(.r𝑆)𝑒) = 𝑝 ↔ (𝑝(.r𝑇)𝑒) = 𝑝))
2918, 28anbi12d 632 . . . . . . 7 (((𝜑𝑒𝐵) ∧ 𝑝𝐵) → (((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝) ↔ ((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝)))
302, 29raleqbidva 3302 . . . . . 6 ((𝜑𝑒𝐵) → (∀𝑝𝐵 ((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝) ↔ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝)))
3130pm5.32da 579 . . . . 5 (𝜑 → ((𝑒𝐵 ∧ ∀𝑝𝐵 ((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝)) ↔ (𝑒𝐵 ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝))))
321eleq2d 2814 . . . . . 6 (𝜑 → (𝑒𝐵𝑒 ∈ (Base‘𝑇)))
3332anbi1d 631 . . . . 5 (𝜑 → ((𝑒𝐵 ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝)) ↔ (𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝))))
3431, 33bitrd 279 . . . 4 (𝜑 → ((𝑒𝐵 ∧ ∀𝑝𝐵 ((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝)) ↔ (𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝))))
3534iotabidv 6483 . . 3 (𝜑 → (℩𝑒(𝑒𝐵 ∧ ∀𝑝𝐵 ((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝))) = (℩𝑒(𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝))))
36 eqid 2729 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
37 urpropd.b . . . . 5 𝐵 = (Base‘𝑆)
3836, 37mgpbas 20030 . . . 4 𝐵 = (Base‘(mulGrp‘𝑆))
39 eqid 2729 . . . . 5 (.r𝑆) = (.r𝑆)
4036, 39mgpplusg 20029 . . . 4 (.r𝑆) = (+g‘(mulGrp‘𝑆))
41 eqid 2729 . . . 4 (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆))
4238, 40, 41grpidval 18564 . . 3 (0g‘(mulGrp‘𝑆)) = (℩𝑒(𝑒𝐵 ∧ ∀𝑝𝐵 ((𝑒(.r𝑆)𝑝) = 𝑝 ∧ (𝑝(.r𝑆)𝑒) = 𝑝)))
43 eqid 2729 . . . . 5 (mulGrp‘𝑇) = (mulGrp‘𝑇)
44 eqid 2729 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
4543, 44mgpbas 20030 . . . 4 (Base‘𝑇) = (Base‘(mulGrp‘𝑇))
46 eqid 2729 . . . . 5 (.r𝑇) = (.r𝑇)
4743, 46mgpplusg 20029 . . . 4 (.r𝑇) = (+g‘(mulGrp‘𝑇))
48 eqid 2729 . . . 4 (0g‘(mulGrp‘𝑇)) = (0g‘(mulGrp‘𝑇))
4945, 47, 48grpidval 18564 . . 3 (0g‘(mulGrp‘𝑇)) = (℩𝑒(𝑒 ∈ (Base‘𝑇) ∧ ∀𝑝 ∈ (Base‘𝑇)((𝑒(.r𝑇)𝑝) = 𝑝 ∧ (𝑝(.r𝑇)𝑒) = 𝑝)))
5035, 42, 493eqtr4g 2789 . 2 (𝜑 → (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑇)))
51 eqid 2729 . . 3 (1r𝑆) = (1r𝑆)
5236, 51ringidval 20068 . 2 (1r𝑆) = (0g‘(mulGrp‘𝑆))
53 eqid 2729 . . 3 (1r𝑇) = (1r𝑇)
5443, 53ringidval 20068 . 2 (1r𝑇) = (0g‘(mulGrp‘𝑇))
5550, 52, 543eqtr4g 2789 1 (𝜑 → (1r𝑆) = (1r𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cio 6450  cfv 6499  (class class class)co 7369  Basecbs 17155  .rcmulr 17197  0gc0g 17378  mulGrpcmgp 20025  1rcur 20066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgp 20026  df-ur 20067
This theorem is referenced by:  opprqus1r  33436
  Copyright terms: Public domain W3C validator