MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdpw Structured version   Visualization version   GIF version

Theorem psdpw 22091
Description: Power rule for partial derivative of power series. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psdpw.s 𝑆 = (𝐼 mPwSer 𝑅)
psdpw.b 𝐵 = (Base‘𝑆)
psdpw.g · = (.g𝑆)
psdpw.t = (.r𝑆)
psdpw.m 𝑀 = (mulGrp‘𝑆)
psdpw.e = (.g𝑀)
psdpw.r (𝜑𝑅 ∈ CRing)
psdpw.x (𝜑𝑋𝐼)
psdpw.f (𝜑𝐹𝐵)
psdpw.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
psdpw (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))

Proof of Theorem psdpw
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdpw.n . 2 (𝜑𝑁 ∈ ℕ)
2 fvoveq1 7392 . . . 4 (𝑛 = 1 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)))
3 id 22 . . . . . 6 (𝑛 = 1 → 𝑛 = 1)
4 oveq1 7376 . . . . . . . 8 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
5 1m1e0 12236 . . . . . . . 8 (1 − 1) = 0
64, 5eqtrdi 2780 . . . . . . 7 (𝑛 = 1 → (𝑛 − 1) = 0)
76oveq1d 7384 . . . . . 6 (𝑛 = 1 → ((𝑛 − 1) 𝐹) = (0 𝐹))
83, 7oveq12d 7387 . . . . 5 (𝑛 = 1 → (𝑛 · ((𝑛 − 1) 𝐹)) = (1 · (0 𝐹)))
98oveq1d 7384 . . . 4 (𝑛 = 1 → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
102, 9eqeq12d 2745 . . 3 (𝑛 = 1 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)) = ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
11 fvoveq1 7392 . . . 4 (𝑛 = 𝑚 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)))
12 id 22 . . . . . 6 (𝑛 = 𝑚𝑛 = 𝑚)
13 oveq1 7376 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 − 1) = (𝑚 − 1))
1413oveq1d 7384 . . . . . 6 (𝑛 = 𝑚 → ((𝑛 − 1) 𝐹) = ((𝑚 − 1) 𝐹))
1512, 14oveq12d 7387 . . . . 5 (𝑛 = 𝑚 → (𝑛 · ((𝑛 − 1) 𝐹)) = (𝑚 · ((𝑚 − 1) 𝐹)))
1615oveq1d 7384 . . . 4 (𝑛 = 𝑚 → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
1711, 16eqeq12d 2745 . . 3 (𝑛 = 𝑚 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
18 fvoveq1 7392 . . . 4 (𝑛 = (𝑚 + 1) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)))
19 id 22 . . . . . 6 (𝑛 = (𝑚 + 1) → 𝑛 = (𝑚 + 1))
20 oveq1 7376 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑛 − 1) = ((𝑚 + 1) − 1))
2120oveq1d 7384 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑛 − 1) 𝐹) = (((𝑚 + 1) − 1) 𝐹))
2219, 21oveq12d 7387 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑛 · ((𝑛 − 1) 𝐹)) = ((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)))
2322oveq1d 7384 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
2418, 23eqeq12d 2745 . . 3 (𝑛 = (𝑚 + 1) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
25 fvoveq1 7392 . . . 4 (𝑛 = 𝑁 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)))
26 id 22 . . . . . 6 (𝑛 = 𝑁𝑛 = 𝑁)
27 oveq1 7376 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
2827oveq1d 7384 . . . . . 6 (𝑛 = 𝑁 → ((𝑛 − 1) 𝐹) = ((𝑁 − 1) 𝐹))
2926, 28oveq12d 7387 . . . . 5 (𝑛 = 𝑁 → (𝑛 · ((𝑛 − 1) 𝐹)) = (𝑁 · ((𝑁 − 1) 𝐹)))
3029oveq1d 7384 . . . 4 (𝑛 = 𝑁 → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
3125, 30eqeq12d 2745 . . 3 (𝑛 = 𝑁 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
32 psdpw.b . . . . 5 𝐵 = (Base‘𝑆)
33 psdpw.t . . . . 5 = (.r𝑆)
34 eqid 2729 . . . . 5 (1r𝑆) = (1r𝑆)
35 psdpw.s . . . . . . 7 𝑆 = (𝐼 mPwSer 𝑅)
36 psdpw.f . . . . . . . . 9 (𝜑𝐹𝐵)
37 reldmpsr 21857 . . . . . . . . . 10 Rel dom mPwSer
3837, 35, 32elbasov 17163 . . . . . . . . 9 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
3936, 38syl 17 . . . . . . . 8 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
4039simpld 494 . . . . . . 7 (𝜑𝐼 ∈ V)
41 psdpw.r . . . . . . 7 (𝜑𝑅 ∈ CRing)
4235, 40, 41psrcrng 21915 . . . . . 6 (𝜑𝑆 ∈ CRing)
4342crngringd 20167 . . . . 5 (𝜑𝑆 ∈ Ring)
4441crnggrpd 20168 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4544grpmgmd 18876 . . . . . 6 (𝜑𝑅 ∈ Mgm)
46 psdpw.x . . . . . 6 (𝜑𝑋𝐼)
4735, 32, 45, 46, 36psdcl 22082 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4832, 33, 34, 43, 47ringlidmd 20193 . . . 4 (𝜑 → ((1r𝑆) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))
49 psdpw.m . . . . . . . . . 10 𝑀 = (mulGrp‘𝑆)
5049, 32mgpbas 20066 . . . . . . . . 9 𝐵 = (Base‘𝑀)
5149, 34ringidval 20104 . . . . . . . . 9 (1r𝑆) = (0g𝑀)
52 psdpw.e . . . . . . . . 9 = (.g𝑀)
5350, 51, 52mulg0 18989 . . . . . . . 8 (𝐹𝐵 → (0 𝐹) = (1r𝑆))
5436, 53syl 17 . . . . . . 7 (𝜑 → (0 𝐹) = (1r𝑆))
5554oveq2d 7385 . . . . . 6 (𝜑 → (1 · (0 𝐹)) = (1 · (1r𝑆)))
5632, 34, 43ringidcld 20187 . . . . . . 7 (𝜑 → (1r𝑆) ∈ 𝐵)
57 psdpw.g . . . . . . . 8 · = (.g𝑆)
5832, 57mulg1 18996 . . . . . . 7 ((1r𝑆) ∈ 𝐵 → (1 · (1r𝑆)) = (1r𝑆))
5956, 58syl 17 . . . . . 6 (𝜑 → (1 · (1r𝑆)) = (1r𝑆))
6055, 59eqtrd 2764 . . . . 5 (𝜑 → (1 · (0 𝐹)) = (1r𝑆))
6160oveq1d 7384 . . . 4 (𝜑 → ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((1r𝑆) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
6250, 52mulg1 18996 . . . . . 6 (𝐹𝐵 → (1 𝐹) = 𝐹)
6336, 62syl 17 . . . . 5 (𝜑 → (1 𝐹) = 𝐹)
6463fveq2d 6844 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))
6548, 61, 643eqtr4rd 2775 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)) = ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
66 simpr 484 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
6766oveq1d 7384 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹) = (((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) 𝐹))
6842adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ CRing)
6942crnggrpd 20168 . . . . . . . . . . 11 (𝜑𝑆 ∈ Grp)
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ Grp)
71 simpr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
7271nnzd 12534 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
7343adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ Ring)
7449ringmgp 20160 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 𝑀 ∈ Mnd)
7573, 74syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑀 ∈ Mnd)
76 nnm1nn0 12461 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
7776adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
7836adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝐹𝐵)
7950, 52, 75, 77, 78mulgnn0cld 19010 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 − 1) 𝐹) ∈ 𝐵)
8032, 57, 70, 72, 79mulgcld 19011 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑚 · ((𝑚 − 1) 𝐹)) ∈ 𝐵)
8147adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
8232, 33, 68, 80, 81, 78crng32d 20180 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) 𝐹) = (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
8382adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) 𝐹) = (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
8432, 57, 33mulgass2 20230 . . . . . . . . . . 11 ((𝑆 ∈ Ring ∧ (𝑚 ∈ ℤ ∧ ((𝑚 − 1) 𝐹) ∈ 𝐵𝐹𝐵)) → ((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) = (𝑚 · (((𝑚 − 1) 𝐹) 𝐹)))
8573, 72, 79, 78, 84syl13anc 1374 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) = (𝑚 · (((𝑚 − 1) 𝐹) 𝐹)))
8649, 33mgpplusg 20065 . . . . . . . . . . . . . 14 = (+g𝑀)
8750, 52, 86mulgnn0p1 19000 . . . . . . . . . . . . 13 ((𝑀 ∈ Mnd ∧ (𝑚 − 1) ∈ ℕ0𝐹𝐵) → (((𝑚 − 1) + 1) 𝐹) = (((𝑚 − 1) 𝐹) 𝐹))
8875, 77, 78, 87syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((𝑚 − 1) + 1) 𝐹) = (((𝑚 − 1) 𝐹) 𝐹))
8971nncnd 12180 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
90 npcan1 11581 . . . . . . . . . . . . . 14 (𝑚 ∈ ℂ → ((𝑚 − 1) + 1) = 𝑚)
9189, 90syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑚 − 1) + 1) = 𝑚)
9291oveq1d 7384 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((𝑚 − 1) + 1) 𝐹) = (𝑚 𝐹))
9388, 92eqtr3d 2766 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (((𝑚 − 1) 𝐹) 𝐹) = (𝑚 𝐹))
9493oveq2d 7385 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑚 · (((𝑚 − 1) 𝐹) 𝐹)) = (𝑚 · (𝑚 𝐹)))
9585, 94eqtrd 2764 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) = (𝑚 · (𝑚 𝐹)))
9695oveq1d 7384 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
9796adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
9867, 83, 973eqtrd 2768 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹) = ((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
9998oveq1d 7384 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹)(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
100 eqid 2729 . . . . . 6 (+g𝑆) = (+g𝑆)
10141ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑅 ∈ CRing)
10246ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑋𝐼)
10343, 74syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ Mnd)
104 mndmgm 18651 . . . . . . . . . 10 (𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
105103, 104syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mgm)
106105adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑀 ∈ Mgm)
10750, 52mulgnncl 19004 . . . . . . . 8 ((𝑀 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ 𝐹𝐵) → (𝑚 𝐹) ∈ 𝐵)
108106, 71, 78, 107syl3anc 1373 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑚 𝐹) ∈ 𝐵)
109108adantr 480 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (𝑚 𝐹) ∈ 𝐵)
11036ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝐹𝐵)
11135, 32, 100, 33, 101, 102, 109, 110psdmul 22087 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 𝐹) 𝐹)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹)(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
11232, 57, 100mulgnnp1 18997 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑚 𝐹) ∈ 𝐵) → ((𝑚 + 1) · (𝑚 𝐹)) = ((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)))
11371, 108, 112syl2anc 584 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) · (𝑚 𝐹)) = ((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)))
114113oveq1d 7384 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
11532, 57, 70, 72, 108mulgcld 19011 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑚 · (𝑚 𝐹)) ∈ 𝐵)
11632, 100, 33, 73, 115, 108, 81ringdird 20185 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
117114, 116eqtrd 2764 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
118117adantr 480 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
11999, 111, 1183eqtr4d 2774 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 𝐹) 𝐹)) = (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
120 simplr 768 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑚 ∈ ℕ)
12150, 52, 86mulgnnp1 18997 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝐹𝐵) → ((𝑚 + 1) 𝐹) = ((𝑚 𝐹) 𝐹))
122120, 110, 121syl2anc 584 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) 𝐹) = ((𝑚 𝐹) 𝐹))
123122fveq2d 6844 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 𝐹) 𝐹)))
124120nncnd 12180 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑚 ∈ ℂ)
125 pncan1 11580 . . . . . . . 8 (𝑚 ∈ ℂ → ((𝑚 + 1) − 1) = 𝑚)
126124, 125syl 17 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) − 1) = 𝑚)
127126oveq1d 7384 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) − 1) 𝐹) = (𝑚 𝐹))
128127oveq2d 7385 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) = ((𝑚 + 1) · (𝑚 𝐹)))
129128oveq1d 7384 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
130119, 123, 1293eqtr4d 2774 . . 3 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
13110, 17, 24, 31, 65, 130nnindd 12184 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
1321, 131mpdan 687 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cfv 6499  (class class class)co 7369  cc 11044  0cc0 11046  1c1 11047   + caddc 11049  cmin 11383  cn 12164  0cn0 12420  cz 12507  Basecbs 17156  +gcplusg 17197  .rcmulr 17198  Mgmcmgm 18548  Mndcmnd 18644  Grpcgrp 18848  .gcmg 18982  mulGrpcmgp 20061  1rcur 20102  Ringcrg 20154  CRingccrg 20155   mPwSer cmps 21847   mPSDer cpsd 22051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-fz 13447  df-fzo 13594  df-seq 13945  df-hash 14274  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-hom 17221  df-cco 17222  df-0g 17381  df-gsum 17382  df-prds 17387  df-pws 17389  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-mulg 18983  df-ghm 19128  df-cntz 19232  df-cmn 19697  df-abl 19698  df-mgp 20062  df-rng 20074  df-ur 20103  df-ring 20156  df-cring 20157  df-oppr 20258  df-psr 21852  df-psd 22077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator