MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdpw Structured version   Visualization version   GIF version

Theorem psdpw 22064
Description: Power rule for partial derivative of power series. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psdpw.s 𝑆 = (𝐼 mPwSer 𝑅)
psdpw.b 𝐵 = (Base‘𝑆)
psdpw.g · = (.g𝑆)
psdpw.t = (.r𝑆)
psdpw.m 𝑀 = (mulGrp‘𝑆)
psdpw.e = (.g𝑀)
psdpw.r (𝜑𝑅 ∈ CRing)
psdpw.x (𝜑𝑋𝐼)
psdpw.f (𝜑𝐹𝐵)
psdpw.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
psdpw (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))

Proof of Theorem psdpw
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdpw.n . 2 (𝜑𝑁 ∈ ℕ)
2 fvoveq1 7413 . . . 4 (𝑛 = 1 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)))
3 id 22 . . . . . 6 (𝑛 = 1 → 𝑛 = 1)
4 oveq1 7397 . . . . . . . 8 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
5 1m1e0 12265 . . . . . . . 8 (1 − 1) = 0
64, 5eqtrdi 2781 . . . . . . 7 (𝑛 = 1 → (𝑛 − 1) = 0)
76oveq1d 7405 . . . . . 6 (𝑛 = 1 → ((𝑛 − 1) 𝐹) = (0 𝐹))
83, 7oveq12d 7408 . . . . 5 (𝑛 = 1 → (𝑛 · ((𝑛 − 1) 𝐹)) = (1 · (0 𝐹)))
98oveq1d 7405 . . . 4 (𝑛 = 1 → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
102, 9eqeq12d 2746 . . 3 (𝑛 = 1 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)) = ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
11 fvoveq1 7413 . . . 4 (𝑛 = 𝑚 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)))
12 id 22 . . . . . 6 (𝑛 = 𝑚𝑛 = 𝑚)
13 oveq1 7397 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 − 1) = (𝑚 − 1))
1413oveq1d 7405 . . . . . 6 (𝑛 = 𝑚 → ((𝑛 − 1) 𝐹) = ((𝑚 − 1) 𝐹))
1512, 14oveq12d 7408 . . . . 5 (𝑛 = 𝑚 → (𝑛 · ((𝑛 − 1) 𝐹)) = (𝑚 · ((𝑚 − 1) 𝐹)))
1615oveq1d 7405 . . . 4 (𝑛 = 𝑚 → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
1711, 16eqeq12d 2746 . . 3 (𝑛 = 𝑚 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
18 fvoveq1 7413 . . . 4 (𝑛 = (𝑚 + 1) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)))
19 id 22 . . . . . 6 (𝑛 = (𝑚 + 1) → 𝑛 = (𝑚 + 1))
20 oveq1 7397 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑛 − 1) = ((𝑚 + 1) − 1))
2120oveq1d 7405 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑛 − 1) 𝐹) = (((𝑚 + 1) − 1) 𝐹))
2219, 21oveq12d 7408 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑛 · ((𝑛 − 1) 𝐹)) = ((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)))
2322oveq1d 7405 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
2418, 23eqeq12d 2746 . . 3 (𝑛 = (𝑚 + 1) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
25 fvoveq1 7413 . . . 4 (𝑛 = 𝑁 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)))
26 id 22 . . . . . 6 (𝑛 = 𝑁𝑛 = 𝑁)
27 oveq1 7397 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
2827oveq1d 7405 . . . . . 6 (𝑛 = 𝑁 → ((𝑛 − 1) 𝐹) = ((𝑁 − 1) 𝐹))
2926, 28oveq12d 7408 . . . . 5 (𝑛 = 𝑁 → (𝑛 · ((𝑛 − 1) 𝐹)) = (𝑁 · ((𝑁 − 1) 𝐹)))
3029oveq1d 7405 . . . 4 (𝑛 = 𝑁 → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
3125, 30eqeq12d 2746 . . 3 (𝑛 = 𝑁 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
32 psdpw.b . . . . 5 𝐵 = (Base‘𝑆)
33 psdpw.t . . . . 5 = (.r𝑆)
34 eqid 2730 . . . . 5 (1r𝑆) = (1r𝑆)
35 psdpw.s . . . . . . 7 𝑆 = (𝐼 mPwSer 𝑅)
36 psdpw.f . . . . . . . . 9 (𝜑𝐹𝐵)
37 reldmpsr 21830 . . . . . . . . . 10 Rel dom mPwSer
3837, 35, 32elbasov 17193 . . . . . . . . 9 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
3936, 38syl 17 . . . . . . . 8 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
4039simpld 494 . . . . . . 7 (𝜑𝐼 ∈ V)
41 psdpw.r . . . . . . 7 (𝜑𝑅 ∈ CRing)
4235, 40, 41psrcrng 21888 . . . . . 6 (𝜑𝑆 ∈ CRing)
4342crngringd 20162 . . . . 5 (𝜑𝑆 ∈ Ring)
4441crnggrpd 20163 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4544grpmgmd 18900 . . . . . 6 (𝜑𝑅 ∈ Mgm)
46 psdpw.x . . . . . 6 (𝜑𝑋𝐼)
4735, 32, 45, 46, 36psdcl 22055 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4832, 33, 34, 43, 47ringlidmd 20188 . . . 4 (𝜑 → ((1r𝑆) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))
49 psdpw.m . . . . . . . . . 10 𝑀 = (mulGrp‘𝑆)
5049, 32mgpbas 20061 . . . . . . . . 9 𝐵 = (Base‘𝑀)
5149, 34ringidval 20099 . . . . . . . . 9 (1r𝑆) = (0g𝑀)
52 psdpw.e . . . . . . . . 9 = (.g𝑀)
5350, 51, 52mulg0 19013 . . . . . . . 8 (𝐹𝐵 → (0 𝐹) = (1r𝑆))
5436, 53syl 17 . . . . . . 7 (𝜑 → (0 𝐹) = (1r𝑆))
5554oveq2d 7406 . . . . . 6 (𝜑 → (1 · (0 𝐹)) = (1 · (1r𝑆)))
5632, 34, 43ringidcld 20182 . . . . . . 7 (𝜑 → (1r𝑆) ∈ 𝐵)
57 psdpw.g . . . . . . . 8 · = (.g𝑆)
5832, 57mulg1 19020 . . . . . . 7 ((1r𝑆) ∈ 𝐵 → (1 · (1r𝑆)) = (1r𝑆))
5956, 58syl 17 . . . . . 6 (𝜑 → (1 · (1r𝑆)) = (1r𝑆))
6055, 59eqtrd 2765 . . . . 5 (𝜑 → (1 · (0 𝐹)) = (1r𝑆))
6160oveq1d 7405 . . . 4 (𝜑 → ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((1r𝑆) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
6250, 52mulg1 19020 . . . . . 6 (𝐹𝐵 → (1 𝐹) = 𝐹)
6336, 62syl 17 . . . . 5 (𝜑 → (1 𝐹) = 𝐹)
6463fveq2d 6865 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))
6548, 61, 643eqtr4rd 2776 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)) = ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
66 simpr 484 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
6766oveq1d 7405 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹) = (((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) 𝐹))
6842adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ CRing)
6942crnggrpd 20163 . . . . . . . . . . 11 (𝜑𝑆 ∈ Grp)
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ Grp)
71 simpr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
7271nnzd 12563 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
7343adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ Ring)
7449ringmgp 20155 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 𝑀 ∈ Mnd)
7573, 74syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑀 ∈ Mnd)
76 nnm1nn0 12490 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
7776adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
7836adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝐹𝐵)
7950, 52, 75, 77, 78mulgnn0cld 19034 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 − 1) 𝐹) ∈ 𝐵)
8032, 57, 70, 72, 79mulgcld 19035 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑚 · ((𝑚 − 1) 𝐹)) ∈ 𝐵)
8147adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
8232, 33, 68, 80, 81, 78crng32d 20175 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) 𝐹) = (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
8382adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) 𝐹) = (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
8432, 57, 33mulgass2 20225 . . . . . . . . . . 11 ((𝑆 ∈ Ring ∧ (𝑚 ∈ ℤ ∧ ((𝑚 − 1) 𝐹) ∈ 𝐵𝐹𝐵)) → ((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) = (𝑚 · (((𝑚 − 1) 𝐹) 𝐹)))
8573, 72, 79, 78, 84syl13anc 1374 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) = (𝑚 · (((𝑚 − 1) 𝐹) 𝐹)))
8649, 33mgpplusg 20060 . . . . . . . . . . . . . 14 = (+g𝑀)
8750, 52, 86mulgnn0p1 19024 . . . . . . . . . . . . 13 ((𝑀 ∈ Mnd ∧ (𝑚 − 1) ∈ ℕ0𝐹𝐵) → (((𝑚 − 1) + 1) 𝐹) = (((𝑚 − 1) 𝐹) 𝐹))
8875, 77, 78, 87syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((𝑚 − 1) + 1) 𝐹) = (((𝑚 − 1) 𝐹) 𝐹))
8971nncnd 12209 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
90 npcan1 11610 . . . . . . . . . . . . . 14 (𝑚 ∈ ℂ → ((𝑚 − 1) + 1) = 𝑚)
9189, 90syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑚 − 1) + 1) = 𝑚)
9291oveq1d 7405 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((𝑚 − 1) + 1) 𝐹) = (𝑚 𝐹))
9388, 92eqtr3d 2767 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (((𝑚 − 1) 𝐹) 𝐹) = (𝑚 𝐹))
9493oveq2d 7406 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑚 · (((𝑚 − 1) 𝐹) 𝐹)) = (𝑚 · (𝑚 𝐹)))
9585, 94eqtrd 2765 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) = (𝑚 · (𝑚 𝐹)))
9695oveq1d 7405 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
9796adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
9867, 83, 973eqtrd 2769 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹) = ((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
9998oveq1d 7405 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹)(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
100 eqid 2730 . . . . . 6 (+g𝑆) = (+g𝑆)
10141ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑅 ∈ CRing)
10246ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑋𝐼)
10343, 74syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ Mnd)
104 mndmgm 18675 . . . . . . . . . 10 (𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
105103, 104syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mgm)
106105adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑀 ∈ Mgm)
10750, 52mulgnncl 19028 . . . . . . . 8 ((𝑀 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ 𝐹𝐵) → (𝑚 𝐹) ∈ 𝐵)
108106, 71, 78, 107syl3anc 1373 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑚 𝐹) ∈ 𝐵)
109108adantr 480 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (𝑚 𝐹) ∈ 𝐵)
11036ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝐹𝐵)
11135, 32, 100, 33, 101, 102, 109, 110psdmul 22060 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 𝐹) 𝐹)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹)(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
11232, 57, 100mulgnnp1 19021 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑚 𝐹) ∈ 𝐵) → ((𝑚 + 1) · (𝑚 𝐹)) = ((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)))
11371, 108, 112syl2anc 584 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) · (𝑚 𝐹)) = ((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)))
114113oveq1d 7405 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
11532, 57, 70, 72, 108mulgcld 19035 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑚 · (𝑚 𝐹)) ∈ 𝐵)
11632, 100, 33, 73, 115, 108, 81ringdird 20180 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
117114, 116eqtrd 2765 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
118117adantr 480 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
11999, 111, 1183eqtr4d 2775 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 𝐹) 𝐹)) = (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
120 simplr 768 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑚 ∈ ℕ)
12150, 52, 86mulgnnp1 19021 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝐹𝐵) → ((𝑚 + 1) 𝐹) = ((𝑚 𝐹) 𝐹))
122120, 110, 121syl2anc 584 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) 𝐹) = ((𝑚 𝐹) 𝐹))
123122fveq2d 6865 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 𝐹) 𝐹)))
124120nncnd 12209 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑚 ∈ ℂ)
125 pncan1 11609 . . . . . . . 8 (𝑚 ∈ ℂ → ((𝑚 + 1) − 1) = 𝑚)
126124, 125syl 17 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) − 1) = 𝑚)
127126oveq1d 7405 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) − 1) 𝐹) = (𝑚 𝐹))
128127oveq2d 7406 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) = ((𝑚 + 1) · (𝑚 𝐹)))
129128oveq1d 7405 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
130119, 123, 1293eqtr4d 2775 . . 3 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
13110, 17, 24, 31, 65, 130nnindd 12213 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
1321, 131mpdan 687 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412  cn 12193  0cn0 12449  cz 12536  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Mgmcmgm 18572  Mndcmnd 18668  Grpcgrp 18872  .gcmg 19006  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150   mPwSer cmps 21820   mPSDer cpsd 22024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-psr 21825  df-psd 22050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator