| Step | Hyp | Ref
| Expression |
| 1 | | psdpw.n |
. 2
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | | fvoveq1 7454 |
. . . 4
⊢ (𝑛 = 1 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 ↑ 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 ↑ 𝐹))) |
| 3 | | id 22 |
. . . . . 6
⊢ (𝑛 = 1 → 𝑛 = 1) |
| 4 | | oveq1 7438 |
. . . . . . . 8
⊢ (𝑛 = 1 → (𝑛 − 1) = (1 − 1)) |
| 5 | | 1m1e0 12338 |
. . . . . . . 8
⊢ (1
− 1) = 0 |
| 6 | 4, 5 | eqtrdi 2793 |
. . . . . . 7
⊢ (𝑛 = 1 → (𝑛 − 1) = 0) |
| 7 | 6 | oveq1d 7446 |
. . . . . 6
⊢ (𝑛 = 1 → ((𝑛 − 1) ↑ 𝐹) = (0 ↑ 𝐹)) |
| 8 | 3, 7 | oveq12d 7449 |
. . . . 5
⊢ (𝑛 = 1 → (𝑛 · ((𝑛 − 1) ↑ 𝐹)) = (1 · (0 ↑ 𝐹))) |
| 9 | 8 | oveq1d 7446 |
. . . 4
⊢ (𝑛 = 1 → ((𝑛 · ((𝑛 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((1 · (0 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 10 | 2, 9 | eqeq12d 2753 |
. . 3
⊢ (𝑛 = 1 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 ↑ 𝐹)) = ((𝑛 · ((𝑛 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 ↑ 𝐹)) = ((1 · (0 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))) |
| 11 | | fvoveq1 7454 |
. . . 4
⊢ (𝑛 = 𝑚 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 ↑ 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹))) |
| 12 | | id 22 |
. . . . . 6
⊢ (𝑛 = 𝑚 → 𝑛 = 𝑚) |
| 13 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝑛 − 1) = (𝑚 − 1)) |
| 14 | 13 | oveq1d 7446 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((𝑛 − 1) ↑ 𝐹) = ((𝑚 − 1) ↑ 𝐹)) |
| 15 | 12, 14 | oveq12d 7449 |
. . . . 5
⊢ (𝑛 = 𝑚 → (𝑛 · ((𝑛 − 1) ↑ 𝐹)) = (𝑚 · ((𝑚 − 1) ↑ 𝐹))) |
| 16 | 15 | oveq1d 7446 |
. . . 4
⊢ (𝑛 = 𝑚 → ((𝑛 · ((𝑛 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 17 | 11, 16 | eqeq12d 2753 |
. . 3
⊢ (𝑛 = 𝑚 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 ↑ 𝐹)) = ((𝑛 · ((𝑛 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))) |
| 18 | | fvoveq1 7454 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 ↑ 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) ↑ 𝐹))) |
| 19 | | id 22 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → 𝑛 = (𝑚 + 1)) |
| 20 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑛 = (𝑚 + 1) → (𝑛 − 1) = ((𝑚 + 1) − 1)) |
| 21 | 20 | oveq1d 7446 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → ((𝑛 − 1) ↑ 𝐹) = (((𝑚 + 1) − 1) ↑ 𝐹)) |
| 22 | 19, 21 | oveq12d 7449 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (𝑛 · ((𝑛 − 1) ↑ 𝐹)) = ((𝑚 + 1) · (((𝑚 + 1) − 1) ↑ 𝐹))) |
| 23 | 22 | oveq1d 7446 |
. . . 4
⊢ (𝑛 = (𝑚 + 1) → ((𝑛 · ((𝑛 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 24 | 18, 23 | eqeq12d 2753 |
. . 3
⊢ (𝑛 = (𝑚 + 1) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 ↑ 𝐹)) = ((𝑛 · ((𝑛 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) ↑ 𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))) |
| 25 | | fvoveq1 7454 |
. . . 4
⊢ (𝑛 = 𝑁 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 ↑ 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 ↑ 𝐹))) |
| 26 | | id 22 |
. . . . . 6
⊢ (𝑛 = 𝑁 → 𝑛 = 𝑁) |
| 27 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1)) |
| 28 | 27 | oveq1d 7446 |
. . . . . 6
⊢ (𝑛 = 𝑁 → ((𝑛 − 1) ↑ 𝐹) = ((𝑁 − 1) ↑ 𝐹)) |
| 29 | 26, 28 | oveq12d 7449 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑛 · ((𝑛 − 1) ↑ 𝐹)) = (𝑁 · ((𝑁 − 1) ↑ 𝐹))) |
| 30 | 29 | oveq1d 7446 |
. . . 4
⊢ (𝑛 = 𝑁 → ((𝑛 · ((𝑛 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑁 · ((𝑁 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 31 | 25, 30 | eqeq12d 2753 |
. . 3
⊢ (𝑛 = 𝑁 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 ↑ 𝐹)) = ((𝑛 · ((𝑛 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 ↑ 𝐹)) = ((𝑁 · ((𝑁 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))) |
| 32 | | psdpw.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
| 33 | | psdpw.t |
. . . . 5
⊢ ∙ =
(.r‘𝑆) |
| 34 | | eqid 2737 |
. . . . 5
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 35 | | psdpw.s |
. . . . . . 7
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 36 | | psdpw.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 37 | | reldmpsr 21934 |
. . . . . . . . . 10
⊢ Rel dom
mPwSer |
| 38 | 37, 35, 32 | elbasov 17254 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 39 | 36, 38 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
| 40 | 39 | simpld 494 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ V) |
| 41 | | psdpw.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 42 | 35, 40, 41 | psrcrng 21992 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ CRing) |
| 43 | 42 | crngringd 20243 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Ring) |
| 44 | 41 | crnggrpd 20244 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 45 | 44 | grpmgmd 18979 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Mgm) |
| 46 | | psdpw.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| 47 | 35, 32, 45, 46, 36 | psdcl 22165 |
. . . . 5
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |
| 48 | 32, 33, 34, 43, 47 | ringlidmd 20269 |
. . . 4
⊢ (𝜑 →
((1r‘𝑆)
∙
(((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) |
| 49 | | psdpw.m |
. . . . . . . . . 10
⊢ 𝑀 = (mulGrp‘𝑆) |
| 50 | 49, 32 | mgpbas 20142 |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑀) |
| 51 | 49, 34 | ringidval 20180 |
. . . . . . . . 9
⊢
(1r‘𝑆) = (0g‘𝑀) |
| 52 | | psdpw.e |
. . . . . . . . 9
⊢ ↑ =
(.g‘𝑀) |
| 53 | 50, 51, 52 | mulg0 19092 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐵 → (0 ↑ 𝐹) = (1r‘𝑆)) |
| 54 | 36, 53 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (0 ↑ 𝐹) = (1r‘𝑆)) |
| 55 | 54 | oveq2d 7447 |
. . . . . 6
⊢ (𝜑 → (1 · (0 ↑ 𝐹)) = (1 ·
(1r‘𝑆))) |
| 56 | 32, 34, 43 | ringidcld 20263 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝑆) ∈ 𝐵) |
| 57 | | psdpw.g |
. . . . . . . 8
⊢ · =
(.g‘𝑆) |
| 58 | 32, 57 | mulg1 19099 |
. . . . . . 7
⊢
((1r‘𝑆) ∈ 𝐵 → (1 ·
(1r‘𝑆)) =
(1r‘𝑆)) |
| 59 | 56, 58 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1 ·
(1r‘𝑆)) =
(1r‘𝑆)) |
| 60 | 55, 59 | eqtrd 2777 |
. . . . 5
⊢ (𝜑 → (1 · (0 ↑ 𝐹)) = (1r‘𝑆)) |
| 61 | 60 | oveq1d 7446 |
. . . 4
⊢ (𝜑 → ((1 · (0 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((1r‘𝑆) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 62 | 50, 52 | mulg1 19099 |
. . . . . 6
⊢ (𝐹 ∈ 𝐵 → (1 ↑ 𝐹) = 𝐹) |
| 63 | 36, 62 | syl 17 |
. . . . 5
⊢ (𝜑 → (1 ↑ 𝐹) = 𝐹) |
| 64 | 63 | fveq2d 6910 |
. . . 4
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 ↑ 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) |
| 65 | 48, 61, 64 | 3eqtr4rd 2788 |
. . 3
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 ↑ 𝐹)) = ((1 · (0 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 66 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 67 | 66 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) ∙ 𝐹) = (((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ∙ 𝐹)) |
| 68 | 42 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑆 ∈ CRing) |
| 69 | 42 | crnggrpd 20244 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ Grp) |
| 70 | 69 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑆 ∈ Grp) |
| 71 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) |
| 72 | 71 | nnzd 12640 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℤ) |
| 73 | 43 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑆 ∈ Ring) |
| 74 | 49 | ringmgp 20236 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ Ring → 𝑀 ∈ Mnd) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑀 ∈ Mnd) |
| 76 | | nnm1nn0 12567 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (𝑚 − 1) ∈
ℕ0) |
| 77 | 76 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 − 1) ∈
ℕ0) |
| 78 | 36 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐹 ∈ 𝐵) |
| 79 | 50, 52, 75, 77, 78 | mulgnn0cld 19113 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 − 1) ↑ 𝐹) ∈ 𝐵) |
| 80 | 32, 57, 70, 72, 79 | mulgcld 19114 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∈ 𝐵) |
| 81 | 47 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵) |
| 82 | 32, 33, 68, 80, 81, 78 | crng32d 20256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ∙ 𝐹) = (((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ 𝐹) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 83 | 82 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ∙ 𝐹) = (((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ 𝐹) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 84 | 32, 57, 33 | mulgass2 20306 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ Ring ∧ (𝑚 ∈ ℤ ∧ ((𝑚 − 1) ↑ 𝐹) ∈ 𝐵 ∧ 𝐹 ∈ 𝐵)) → ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ 𝐹) = (𝑚 · (((𝑚 − 1) ↑ 𝐹) ∙ 𝐹))) |
| 85 | 73, 72, 79, 78, 84 | syl13anc 1374 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ 𝐹) = (𝑚 · (((𝑚 − 1) ↑ 𝐹) ∙ 𝐹))) |
| 86 | 49, 33 | mgpplusg 20141 |
. . . . . . . . . . . . . 14
⊢ ∙ =
(+g‘𝑀) |
| 87 | 50, 52, 86 | mulgnn0p1 19103 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ Mnd ∧ (𝑚 − 1) ∈
ℕ0 ∧ 𝐹
∈ 𝐵) → (((𝑚 − 1) + 1) ↑ 𝐹) = (((𝑚 − 1) ↑ 𝐹) ∙ 𝐹)) |
| 88 | 75, 77, 78, 87 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 − 1) + 1) ↑ 𝐹) = (((𝑚 − 1) ↑ 𝐹) ∙ 𝐹)) |
| 89 | 71 | nncnd 12282 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) |
| 90 | | npcan1 11688 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℂ → ((𝑚 − 1) + 1) = 𝑚) |
| 91 | 89, 90 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 − 1) + 1) = 𝑚) |
| 92 | 91 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 − 1) + 1) ↑ 𝐹) = (𝑚 ↑ 𝐹)) |
| 93 | 88, 92 | eqtr3d 2779 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 − 1) ↑ 𝐹) ∙ 𝐹) = (𝑚 ↑ 𝐹)) |
| 94 | 93 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 · (((𝑚 − 1) ↑ 𝐹) ∙ 𝐹)) = (𝑚 · (𝑚 ↑ 𝐹))) |
| 95 | 85, 94 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ 𝐹) = (𝑚 · (𝑚 ↑ 𝐹))) |
| 96 | 95 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ 𝐹) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 97 | 96 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ 𝐹) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 98 | 67, 83, 97 | 3eqtrd 2781 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) ∙ 𝐹) = ((𝑚 · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 99 | 98 | oveq1d 7446 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) ∙ 𝐹)(+g‘𝑆)((𝑚 ↑ 𝐹) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) = (((𝑚 · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g‘𝑆)((𝑚 ↑ 𝐹) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))) |
| 100 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 101 | 41 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑅 ∈ CRing) |
| 102 | 46 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑋 ∈ 𝐼) |
| 103 | 43, 74 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ Mnd) |
| 104 | | mndmgm 18754 |
. . . . . . . . . 10
⊢ (𝑀 ∈ Mnd → 𝑀 ∈ Mgm) |
| 105 | 103, 104 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Mgm) |
| 106 | 105 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑀 ∈ Mgm) |
| 107 | 50, 52 | mulgnncl 19107 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ 𝐹 ∈ 𝐵) → (𝑚 ↑ 𝐹) ∈ 𝐵) |
| 108 | 106, 71, 78, 107 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 ↑ 𝐹) ∈ 𝐵) |
| 109 | 108 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (𝑚 ↑ 𝐹) ∈ 𝐵) |
| 110 | 36 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝐹 ∈ 𝐵) |
| 111 | 35, 32, 100, 33, 101, 102, 109, 110 | psdmul 22170 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 ↑ 𝐹) ∙ 𝐹)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) ∙ 𝐹)(+g‘𝑆)((𝑚 ↑ 𝐹) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))) |
| 112 | 32, 57, 100 | mulgnnp1 19100 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 ↑ 𝐹) ∈ 𝐵) → ((𝑚 + 1) · (𝑚 ↑ 𝐹)) = ((𝑚 · (𝑚 ↑ 𝐹))(+g‘𝑆)(𝑚 ↑ 𝐹))) |
| 113 | 71, 108, 112 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) · (𝑚 ↑ 𝐹)) = ((𝑚 · (𝑚 ↑ 𝐹))(+g‘𝑆)(𝑚 ↑ 𝐹))) |
| 114 | 113 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 + 1) · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 ↑ 𝐹))(+g‘𝑆)(𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 115 | 32, 57, 70, 72, 108 | mulgcld 19114 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 · (𝑚 ↑ 𝐹)) ∈ 𝐵) |
| 116 | 32, 100, 33, 73, 115, 108, 81 | ringdird 20261 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 · (𝑚 ↑ 𝐹))(+g‘𝑆)(𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g‘𝑆)((𝑚 ↑ 𝐹) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))) |
| 117 | 114, 116 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 + 1) · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g‘𝑆)((𝑚 ↑ 𝐹) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))) |
| 118 | 117 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g‘𝑆)((𝑚 ↑ 𝐹) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))) |
| 119 | 99, 111, 118 | 3eqtr4d 2787 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 ↑ 𝐹) ∙ 𝐹)) = (((𝑚 + 1) · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 120 | | simplr 769 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑚 ∈ ℕ) |
| 121 | 50, 52, 86 | mulgnnp1 19100 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ ∧ 𝐹 ∈ 𝐵) → ((𝑚 + 1) ↑ 𝐹) = ((𝑚 ↑ 𝐹) ∙ 𝐹)) |
| 122 | 120, 110,
121 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) ↑ 𝐹) = ((𝑚 ↑ 𝐹) ∙ 𝐹)) |
| 123 | 122 | fveq2d 6910 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) ↑ 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 ↑ 𝐹) ∙ 𝐹))) |
| 124 | 120 | nncnd 12282 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑚 ∈ ℂ) |
| 125 | | pncan1 11687 |
. . . . . . . 8
⊢ (𝑚 ∈ ℂ → ((𝑚 + 1) − 1) = 𝑚) |
| 126 | 124, 125 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) − 1) = 𝑚) |
| 127 | 126 | oveq1d 7446 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) − 1) ↑ 𝐹) = (𝑚 ↑ 𝐹)) |
| 128 | 127 | oveq2d 7447 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) · (((𝑚 + 1) − 1) ↑ 𝐹)) = ((𝑚 + 1) · (𝑚 ↑ 𝐹))) |
| 129 | 128 | oveq1d 7446 |
. . . 4
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) · (((𝑚 + 1) − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 + 1) · (𝑚 ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 130 | 119, 123,
129 | 3eqtr4d 2787 |
. . 3
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 ↑ 𝐹)) = ((𝑚 · ((𝑚 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) ↑ 𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 131 | 10, 17, 24, 31, 65, 130 | nnindd 12286 |
. 2
⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 ↑ 𝐹)) = ((𝑁 · ((𝑁 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |
| 132 | 1, 131 | mpdan 687 |
1
⊢ (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 ↑ 𝐹)) = ((𝑁 · ((𝑁 − 1) ↑ 𝐹)) ∙ (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) |