MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psdpw Structured version   Visualization version   GIF version

Theorem psdpw 22174
Description: Power rule for partial derivative of power series. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psdpw.s 𝑆 = (𝐼 mPwSer 𝑅)
psdpw.b 𝐵 = (Base‘𝑆)
psdpw.g · = (.g𝑆)
psdpw.t = (.r𝑆)
psdpw.m 𝑀 = (mulGrp‘𝑆)
psdpw.e = (.g𝑀)
psdpw.r (𝜑𝑅 ∈ CRing)
psdpw.x (𝜑𝑋𝐼)
psdpw.f (𝜑𝐹𝐵)
psdpw.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
psdpw (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))

Proof of Theorem psdpw
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psdpw.n . 2 (𝜑𝑁 ∈ ℕ)
2 fvoveq1 7454 . . . 4 (𝑛 = 1 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)))
3 id 22 . . . . . 6 (𝑛 = 1 → 𝑛 = 1)
4 oveq1 7438 . . . . . . . 8 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
5 1m1e0 12338 . . . . . . . 8 (1 − 1) = 0
64, 5eqtrdi 2793 . . . . . . 7 (𝑛 = 1 → (𝑛 − 1) = 0)
76oveq1d 7446 . . . . . 6 (𝑛 = 1 → ((𝑛 − 1) 𝐹) = (0 𝐹))
83, 7oveq12d 7449 . . . . 5 (𝑛 = 1 → (𝑛 · ((𝑛 − 1) 𝐹)) = (1 · (0 𝐹)))
98oveq1d 7446 . . . 4 (𝑛 = 1 → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
102, 9eqeq12d 2753 . . 3 (𝑛 = 1 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)) = ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
11 fvoveq1 7454 . . . 4 (𝑛 = 𝑚 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)))
12 id 22 . . . . . 6 (𝑛 = 𝑚𝑛 = 𝑚)
13 oveq1 7438 . . . . . . 7 (𝑛 = 𝑚 → (𝑛 − 1) = (𝑚 − 1))
1413oveq1d 7446 . . . . . 6 (𝑛 = 𝑚 → ((𝑛 − 1) 𝐹) = ((𝑚 − 1) 𝐹))
1512, 14oveq12d 7449 . . . . 5 (𝑛 = 𝑚 → (𝑛 · ((𝑛 − 1) 𝐹)) = (𝑚 · ((𝑚 − 1) 𝐹)))
1615oveq1d 7446 . . . 4 (𝑛 = 𝑚 → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
1711, 16eqeq12d 2753 . . 3 (𝑛 = 𝑚 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
18 fvoveq1 7454 . . . 4 (𝑛 = (𝑚 + 1) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)))
19 id 22 . . . . . 6 (𝑛 = (𝑚 + 1) → 𝑛 = (𝑚 + 1))
20 oveq1 7438 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑛 − 1) = ((𝑚 + 1) − 1))
2120oveq1d 7446 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑛 − 1) 𝐹) = (((𝑚 + 1) − 1) 𝐹))
2219, 21oveq12d 7449 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑛 · ((𝑛 − 1) 𝐹)) = ((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)))
2322oveq1d 7446 . . . 4 (𝑛 = (𝑚 + 1) → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
2418, 23eqeq12d 2753 . . 3 (𝑛 = (𝑚 + 1) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
25 fvoveq1 7454 . . . 4 (𝑛 = 𝑁 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)))
26 id 22 . . . . . 6 (𝑛 = 𝑁𝑛 = 𝑁)
27 oveq1 7438 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
2827oveq1d 7446 . . . . . 6 (𝑛 = 𝑁 → ((𝑛 − 1) 𝐹) = ((𝑁 − 1) 𝐹))
2926, 28oveq12d 7449 . . . . 5 (𝑛 = 𝑁 → (𝑛 · ((𝑛 − 1) 𝐹)) = (𝑁 · ((𝑁 − 1) 𝐹)))
3029oveq1d 7446 . . . 4 (𝑛 = 𝑁 → ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
3125, 30eqeq12d 2753 . . 3 (𝑛 = 𝑁 → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑛 𝐹)) = ((𝑛 · ((𝑛 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) ↔ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
32 psdpw.b . . . . 5 𝐵 = (Base‘𝑆)
33 psdpw.t . . . . 5 = (.r𝑆)
34 eqid 2737 . . . . 5 (1r𝑆) = (1r𝑆)
35 psdpw.s . . . . . . 7 𝑆 = (𝐼 mPwSer 𝑅)
36 psdpw.f . . . . . . . . 9 (𝜑𝐹𝐵)
37 reldmpsr 21934 . . . . . . . . . 10 Rel dom mPwSer
3837, 35, 32elbasov 17254 . . . . . . . . 9 (𝐹𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
3936, 38syl 17 . . . . . . . 8 (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
4039simpld 494 . . . . . . 7 (𝜑𝐼 ∈ V)
41 psdpw.r . . . . . . 7 (𝜑𝑅 ∈ CRing)
4235, 40, 41psrcrng 21992 . . . . . 6 (𝜑𝑆 ∈ CRing)
4342crngringd 20243 . . . . 5 (𝜑𝑆 ∈ Ring)
4441crnggrpd 20244 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4544grpmgmd 18979 . . . . . 6 (𝜑𝑅 ∈ Mgm)
46 psdpw.x . . . . . 6 (𝜑𝑋𝐼)
4735, 32, 45, 46, 36psdcl 22165 . . . . 5 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
4832, 33, 34, 43, 47ringlidmd 20269 . . . 4 (𝜑 → ((1r𝑆) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))
49 psdpw.m . . . . . . . . . 10 𝑀 = (mulGrp‘𝑆)
5049, 32mgpbas 20142 . . . . . . . . 9 𝐵 = (Base‘𝑀)
5149, 34ringidval 20180 . . . . . . . . 9 (1r𝑆) = (0g𝑀)
52 psdpw.e . . . . . . . . 9 = (.g𝑀)
5350, 51, 52mulg0 19092 . . . . . . . 8 (𝐹𝐵 → (0 𝐹) = (1r𝑆))
5436, 53syl 17 . . . . . . 7 (𝜑 → (0 𝐹) = (1r𝑆))
5554oveq2d 7447 . . . . . 6 (𝜑 → (1 · (0 𝐹)) = (1 · (1r𝑆)))
5632, 34, 43ringidcld 20263 . . . . . . 7 (𝜑 → (1r𝑆) ∈ 𝐵)
57 psdpw.g . . . . . . . 8 · = (.g𝑆)
5832, 57mulg1 19099 . . . . . . 7 ((1r𝑆) ∈ 𝐵 → (1 · (1r𝑆)) = (1r𝑆))
5956, 58syl 17 . . . . . 6 (𝜑 → (1 · (1r𝑆)) = (1r𝑆))
6055, 59eqtrd 2777 . . . . 5 (𝜑 → (1 · (0 𝐹)) = (1r𝑆))
6160oveq1d 7446 . . . 4 (𝜑 → ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((1r𝑆) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
6250, 52mulg1 19099 . . . . . 6 (𝐹𝐵 → (1 𝐹) = 𝐹)
6336, 62syl 17 . . . . 5 (𝜑 → (1 𝐹) = 𝐹)
6463fveq2d 6910 . . . 4 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))
6548, 61, 643eqtr4rd 2788 . . 3 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(1 𝐹)) = ((1 · (0 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
66 simpr 484 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
6766oveq1d 7446 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹) = (((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) 𝐹))
6842adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ CRing)
6942crnggrpd 20244 . . . . . . . . . . 11 (𝜑𝑆 ∈ Grp)
7069adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ Grp)
71 simpr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
7271nnzd 12640 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℤ)
7343adantr 480 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → 𝑆 ∈ Ring)
7449ringmgp 20236 . . . . . . . . . . . 12 (𝑆 ∈ Ring → 𝑀 ∈ Mnd)
7573, 74syl 17 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑀 ∈ Mnd)
76 nnm1nn0 12567 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
7776adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
7836adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝐹𝐵)
7950, 52, 75, 77, 78mulgnn0cld 19113 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 − 1) 𝐹) ∈ 𝐵)
8032, 57, 70, 72, 79mulgcld 19114 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑚 · ((𝑚 − 1) 𝐹)) ∈ 𝐵)
8147adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹) ∈ 𝐵)
8232, 33, 68, 80, 81, 78crng32d 20256 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) 𝐹) = (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
8382adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) 𝐹) = (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
8432, 57, 33mulgass2 20306 . . . . . . . . . . 11 ((𝑆 ∈ Ring ∧ (𝑚 ∈ ℤ ∧ ((𝑚 − 1) 𝐹) ∈ 𝐵𝐹𝐵)) → ((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) = (𝑚 · (((𝑚 − 1) 𝐹) 𝐹)))
8573, 72, 79, 78, 84syl13anc 1374 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) = (𝑚 · (((𝑚 − 1) 𝐹) 𝐹)))
8649, 33mgpplusg 20141 . . . . . . . . . . . . . 14 = (+g𝑀)
8750, 52, 86mulgnn0p1 19103 . . . . . . . . . . . . 13 ((𝑀 ∈ Mnd ∧ (𝑚 − 1) ∈ ℕ0𝐹𝐵) → (((𝑚 − 1) + 1) 𝐹) = (((𝑚 − 1) 𝐹) 𝐹))
8875, 77, 78, 87syl3anc 1373 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((𝑚 − 1) + 1) 𝐹) = (((𝑚 − 1) 𝐹) 𝐹))
8971nncnd 12282 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
90 npcan1 11688 . . . . . . . . . . . . . 14 (𝑚 ∈ ℂ → ((𝑚 − 1) + 1) = 𝑚)
9189, 90syl 17 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑚 − 1) + 1) = 𝑚)
9291oveq1d 7446 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (((𝑚 − 1) + 1) 𝐹) = (𝑚 𝐹))
9388, 92eqtr3d 2779 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (((𝑚 − 1) 𝐹) 𝐹) = (𝑚 𝐹))
9493oveq2d 7447 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (𝑚 · (((𝑚 − 1) 𝐹) 𝐹)) = (𝑚 · (𝑚 𝐹)))
9585, 94eqtrd 2777 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) = (𝑚 · (𝑚 𝐹)))
9695oveq1d 7446 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
9796adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 · ((𝑚 − 1) 𝐹)) 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = ((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
9867, 83, 973eqtrd 2781 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹) = ((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
9998oveq1d 7446 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹)(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
100 eqid 2737 . . . . . 6 (+g𝑆) = (+g𝑆)
10141ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑅 ∈ CRing)
10246ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑋𝐼)
10343, 74syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ Mnd)
104 mndmgm 18754 . . . . . . . . . 10 (𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
105103, 104syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ Mgm)
106105adantr 480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → 𝑀 ∈ Mgm)
10750, 52mulgnncl 19107 . . . . . . . 8 ((𝑀 ∈ Mgm ∧ 𝑚 ∈ ℕ ∧ 𝐹𝐵) → (𝑚 𝐹) ∈ 𝐵)
108106, 71, 78, 107syl3anc 1373 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑚 𝐹) ∈ 𝐵)
109108adantr 480 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (𝑚 𝐹) ∈ 𝐵)
11036ad2antrr 726 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝐹𝐵)
11135, 32, 100, 33, 101, 102, 109, 110psdmul 22170 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 𝐹) 𝐹)) = (((((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) 𝐹)(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
11232, 57, 100mulgnnp1 19100 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ (𝑚 𝐹) ∈ 𝐵) → ((𝑚 + 1) · (𝑚 𝐹)) = ((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)))
11371, 108, 112syl2anc 584 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 1) · (𝑚 𝐹)) = ((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)))
114113oveq1d 7446 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
11532, 57, 70, 72, 108mulgcld 19114 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑚 · (𝑚 𝐹)) ∈ 𝐵)
11632, 100, 33, 73, 115, 108, 81ringdird 20261 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (((𝑚 · (𝑚 𝐹))(+g𝑆)(𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
117114, 116eqtrd 2777 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
118117adantr 480 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))(+g𝑆)((𝑚 𝐹) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))))
11999, 111, 1183eqtr4d 2787 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 𝐹) 𝐹)) = (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
120 simplr 769 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑚 ∈ ℕ)
12150, 52, 86mulgnnp1 19100 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝐹𝐵) → ((𝑚 + 1) 𝐹) = ((𝑚 𝐹) 𝐹))
122120, 110, 121syl2anc 584 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) 𝐹) = ((𝑚 𝐹) 𝐹))
123122fveq2d 6910 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)) = (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 𝐹) 𝐹)))
124120nncnd 12282 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → 𝑚 ∈ ℂ)
125 pncan1 11687 . . . . . . . 8 (𝑚 ∈ ℂ → ((𝑚 + 1) − 1) = 𝑚)
126124, 125syl 17 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) − 1) = 𝑚)
127126oveq1d 7446 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) − 1) 𝐹) = (𝑚 𝐹))
128127oveq2d 7447 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → ((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) = ((𝑚 + 1) · (𝑚 𝐹)))
129128oveq1d 7446 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)) = (((𝑚 + 1) · (𝑚 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
130119, 123, 1293eqtr4d 2787 . . 3 (((𝜑𝑚 ∈ ℕ) ∧ (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑚 𝐹)) = ((𝑚 · ((𝑚 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹))) → (((𝐼 mPSDer 𝑅)‘𝑋)‘((𝑚 + 1) 𝐹)) = (((𝑚 + 1) · (((𝑚 + 1) − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
13110, 17, 24, 31, 65, 130nnindd 12286 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
1321, 131mpdan 687 1 (𝜑 → (((𝐼 mPSDer 𝑅)‘𝑋)‘(𝑁 𝐹)) = ((𝑁 · ((𝑁 − 1) 𝐹)) (((𝐼 mPSDer 𝑅)‘𝑋)‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  cn 12266  0cn0 12526  cz 12613  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  Mgmcmgm 18651  Mndcmnd 18747  Grpcgrp 18951  .gcmg 19085  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231   mPwSer cmps 21924   mPSDer cpsd 22134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-psr 21929  df-psd 22160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator