Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringidcl | Structured version Visualization version GIF version |
Description: The unit element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidcl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringidcl.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidcl | ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | ringmgp 19789 | . 2 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
3 | ringidcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 1, 3 | mgpbas 19726 | . . 3 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
5 | ringidcl.u | . . . 4 ⊢ 1 = (1r‘𝑅) | |
6 | 1, 5 | ringidval 19739 | . . 3 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
7 | 4, 6 | mndidcl 18400 | . 2 ⊢ ((mulGrp‘𝑅) ∈ Mnd → 1 ∈ 𝐵) |
8 | 2, 7 | syl 17 | 1 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
Copyright terms: Public domain | W3C validator |