![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riota1a | Structured version Visualization version GIF version |
Description: Property of iota. (Contributed by NM, 23-Aug-2011.) |
Ref | Expression |
---|---|
riota1a | ⊢ ((𝑥 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 529 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
2 | df-reu 3377 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | iota1 6520 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) | |
4 | 2, 3 | sylbi 216 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) |
5 | 1, 4 | sylan9bb 510 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃!weu 2562 ∃!wreu 3374 ℩cio 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-reu 3377 df-v 3476 df-un 3953 df-in 3955 df-ss 3965 df-sn 4629 df-pr 4631 df-uni 4909 df-iota 6495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |