MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota1a Structured version   Visualization version   GIF version

Theorem riota1a 7383
Description: Property of iota. (Contributed by NM, 23-Aug-2011.)
Assertion
Ref Expression
riota1a ((𝑥𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))

Proof of Theorem riota1a
StepHypRef Expression
1 ibar 528 . 2 (𝑥𝐴 → (𝜑 ↔ (𝑥𝐴𝜑)))
2 df-reu 3371 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 iota1 6513 . . 3 (∃!𝑥(𝑥𝐴𝜑) → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
42, 3sylbi 216 . 2 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
51, 4sylan9bb 509 1 ((𝑥𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  ∃!weu 2556  ∃!wreu 3368  cio 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-reu 3371  df-v 3470  df-un 3948  df-in 3950  df-ss 3960  df-sn 4624  df-pr 4626  df-uni 4903  df-iota 6488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator