MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota1a Structured version   Visualization version   GIF version

Theorem riota1a 7427
Description: Property of iota. (Contributed by NM, 23-Aug-2011.)
Assertion
Ref Expression
riota1a ((𝑥𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))

Proof of Theorem riota1a
StepHypRef Expression
1 ibar 528 . 2 (𝑥𝐴 → (𝜑 ↔ (𝑥𝐴𝜑)))
2 df-reu 3389 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
3 iota1 6550 . . 3 (∃!𝑥(𝑥𝐴𝜑) → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
42, 3sylbi 217 . 2 (∃!𝑥𝐴 𝜑 → ((𝑥𝐴𝜑) ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
51, 4sylan9bb 509 1 ((𝑥𝐴 ∧ ∃!𝑥𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥𝐴𝜑)) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  ∃!weu 2571  ∃!wreu 3386  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-reu 3389  df-v 3490  df-un 3981  df-ss 3993  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator