![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimdm | Structured version Visualization version GIF version |
Description: Two ways to express that a function has a limit. (The expression ( ⇝𝑟 ‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 8-May-2016.) |
Ref | Expression |
---|---|
rlimuni.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
rlimuni.2 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
Ref | Expression |
---|---|
rlimdm | ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5912 | . . . 4 ⊢ (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹 ⇝𝑟 𝑥)) | |
2 | 1 | ibi 267 | . . 3 ⊢ (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹 ⇝𝑟 𝑥) |
3 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → 𝐹 ⇝𝑟 𝑥) | |
4 | df-fv 6571 | . . . . . . 7 ⊢ ( ⇝𝑟 ‘𝐹) = (℩𝑦𝐹 ⇝𝑟 𝑦) | |
5 | rlimuni.1 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
6 | 5 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹:𝐴⟶ℂ) |
7 | rlimuni.2 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
8 | 7 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → sup(𝐴, ℝ*, < ) = +∞) |
9 | simprr 773 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹 ⇝𝑟 𝑦) | |
10 | simprl 771 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹 ⇝𝑟 𝑥) | |
11 | 6, 8, 9, 10 | rlimuni 15583 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝑦 = 𝑥) |
12 | 11 | expr 456 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝐹 ⇝𝑟 𝑦 → 𝑦 = 𝑥)) |
13 | breq2 5152 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝑥 → (𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑥)) | |
14 | 3, 13 | syl5ibrcom 247 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝑦 = 𝑥 → 𝐹 ⇝𝑟 𝑦)) |
15 | 12, 14 | impbid 212 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥)) |
16 | 15 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥)) |
17 | 16 | iota5 6546 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑦𝐹 ⇝𝑟 𝑦) = 𝑥) |
18 | 17 | elvd 3484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (℩𝑦𝐹 ⇝𝑟 𝑦) = 𝑥) |
19 | 4, 18 | eqtrid 2787 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → ( ⇝𝑟 ‘𝐹) = 𝑥) |
20 | 3, 19 | breqtrrd 5176 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹)) |
21 | 20 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
22 | 21 | exlimdv 1931 | . . 3 ⊢ (𝜑 → (∃𝑥 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
23 | 2, 22 | syl5 34 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
24 | rlimrel 15526 | . . 3 ⊢ Rel ⇝𝑟 | |
25 | 24 | releldmi 5962 | . 2 ⊢ (𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹) → 𝐹 ∈ dom ⇝𝑟 ) |
26 | 23, 25 | impbid1 225 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 class class class wbr 5148 dom cdm 5689 ℩cio 6514 ⟶wf 6559 ‘cfv 6563 supcsup 9478 ℂcc 11151 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ⇝𝑟 crli 15518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-rlim 15522 |
This theorem is referenced by: caucvgrlem2 15708 caucvg 15712 dchrisum0lem3 27578 |
Copyright terms: Public domain | W3C validator |