| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimdm | Structured version Visualization version GIF version | ||
| Description: Two ways to express that a function has a limit. (The expression ( ⇝𝑟 ‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 8-May-2016.) |
| Ref | Expression |
|---|---|
| rlimuni.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| rlimuni.2 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
| Ref | Expression |
|---|---|
| rlimdm | ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmg 5852 | . . . 4 ⊢ (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹 ⇝𝑟 𝑥)) | |
| 2 | 1 | ibi 267 | . . 3 ⊢ (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹 ⇝𝑟 𝑥) |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → 𝐹 ⇝𝑟 𝑥) | |
| 4 | df-fv 6507 | . . . . . . 7 ⊢ ( ⇝𝑟 ‘𝐹) = (℩𝑦𝐹 ⇝𝑟 𝑦) | |
| 5 | rlimuni.1 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 6 | 5 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹:𝐴⟶ℂ) |
| 7 | rlimuni.2 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
| 8 | 7 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → sup(𝐴, ℝ*, < ) = +∞) |
| 9 | simprr 772 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹 ⇝𝑟 𝑦) | |
| 10 | simprl 770 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹 ⇝𝑟 𝑥) | |
| 11 | 6, 8, 9, 10 | rlimuni 15492 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝑦 = 𝑥) |
| 12 | 11 | expr 456 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝐹 ⇝𝑟 𝑦 → 𝑦 = 𝑥)) |
| 13 | breq2 5106 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝑥 → (𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑥)) | |
| 14 | 3, 13 | syl5ibrcom 247 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝑦 = 𝑥 → 𝐹 ⇝𝑟 𝑦)) |
| 15 | 12, 14 | impbid 212 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥)) |
| 16 | 15 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥)) |
| 17 | 16 | iota5 6482 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑦𝐹 ⇝𝑟 𝑦) = 𝑥) |
| 18 | 17 | elvd 3450 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (℩𝑦𝐹 ⇝𝑟 𝑦) = 𝑥) |
| 19 | 4, 18 | eqtrid 2776 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → ( ⇝𝑟 ‘𝐹) = 𝑥) |
| 20 | 3, 19 | breqtrrd 5130 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹)) |
| 21 | 20 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
| 22 | 21 | exlimdv 1933 | . . 3 ⊢ (𝜑 → (∃𝑥 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
| 23 | 2, 22 | syl5 34 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
| 24 | rlimrel 15435 | . . 3 ⊢ Rel ⇝𝑟 | |
| 25 | 24 | releldmi 5901 | . 2 ⊢ (𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹) → 𝐹 ∈ dom ⇝𝑟 ) |
| 26 | 23, 25 | impbid1 225 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 dom cdm 5631 ℩cio 6450 ⟶wf 6495 ‘cfv 6499 supcsup 9367 ℂcc 11042 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ⇝𝑟 crli 15427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-rlim 15431 |
| This theorem is referenced by: caucvgrlem2 15617 caucvg 15621 dchrisum0lem3 27406 |
| Copyright terms: Public domain | W3C validator |