| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimdm | Structured version Visualization version GIF version | ||
| Description: Two ways to express that a function has a limit. (The expression ( ⇝𝑟 ‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 8-May-2016.) |
| Ref | Expression |
|---|---|
| rlimuni.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| rlimuni.2 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
| Ref | Expression |
|---|---|
| rlimdm | ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmg 5865 | . . . 4 ⊢ (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹 ⇝𝑟 𝑥)) | |
| 2 | 1 | ibi 267 | . . 3 ⊢ (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹 ⇝𝑟 𝑥) |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → 𝐹 ⇝𝑟 𝑥) | |
| 4 | df-fv 6522 | . . . . . . 7 ⊢ ( ⇝𝑟 ‘𝐹) = (℩𝑦𝐹 ⇝𝑟 𝑦) | |
| 5 | rlimuni.1 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 6 | 5 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹:𝐴⟶ℂ) |
| 7 | rlimuni.2 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
| 8 | 7 | adantr 480 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → sup(𝐴, ℝ*, < ) = +∞) |
| 9 | simprr 772 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹 ⇝𝑟 𝑦) | |
| 10 | simprl 770 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹 ⇝𝑟 𝑥) | |
| 11 | 6, 8, 9, 10 | rlimuni 15523 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝑦 = 𝑥) |
| 12 | 11 | expr 456 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝐹 ⇝𝑟 𝑦 → 𝑦 = 𝑥)) |
| 13 | breq2 5114 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝑥 → (𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑥)) | |
| 14 | 3, 13 | syl5ibrcom 247 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝑦 = 𝑥 → 𝐹 ⇝𝑟 𝑦)) |
| 15 | 12, 14 | impbid 212 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥)) |
| 16 | 15 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥)) |
| 17 | 16 | iota5 6497 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑦𝐹 ⇝𝑟 𝑦) = 𝑥) |
| 18 | 17 | elvd 3456 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (℩𝑦𝐹 ⇝𝑟 𝑦) = 𝑥) |
| 19 | 4, 18 | eqtrid 2777 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → ( ⇝𝑟 ‘𝐹) = 𝑥) |
| 20 | 3, 19 | breqtrrd 5138 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹)) |
| 21 | 20 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
| 22 | 21 | exlimdv 1933 | . . 3 ⊢ (𝜑 → (∃𝑥 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
| 23 | 2, 22 | syl5 34 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
| 24 | rlimrel 15466 | . . 3 ⊢ Rel ⇝𝑟 | |
| 25 | 24 | releldmi 5915 | . 2 ⊢ (𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹) → 𝐹 ∈ dom ⇝𝑟 ) |
| 26 | 23, 25 | impbid1 225 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 dom cdm 5641 ℩cio 6465 ⟶wf 6510 ‘cfv 6514 supcsup 9398 ℂcc 11073 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 ⇝𝑟 crli 15458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-rlim 15462 |
| This theorem is referenced by: caucvgrlem2 15648 caucvg 15652 dchrisum0lem3 27437 |
| Copyright terms: Public domain | W3C validator |