MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimdm Structured version   Visualization version   GIF version

Theorem rlimdm 15305
Description: Two ways to express that a function has a limit. (The expression ( ⇝𝑟𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1 (𝜑𝐹:𝐴⟶ℂ)
rlimuni.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
Assertion
Ref Expression
rlimdm (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))

Proof of Theorem rlimdm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldmg 5820 . . . 4 (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹𝑟 𝑥))
21ibi 267 . . 3 (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹𝑟 𝑥)
3 simpr 486 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 𝑥)
4 df-fv 6466 . . . . . . 7 ( ⇝𝑟𝐹) = (℩𝑦𝐹𝑟 𝑦)
5 rlimuni.1 . . . . . . . . . . . . . 14 (𝜑𝐹:𝐴⟶ℂ)
65adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹:𝐴⟶ℂ)
7 rlimuni.2 . . . . . . . . . . . . . 14 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
87adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → sup(𝐴, ℝ*, < ) = +∞)
9 simprr 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹𝑟 𝑦)
10 simprl 769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝐹𝑟 𝑥)
116, 8, 9, 10rlimuni 15304 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐹𝑟 𝑥𝐹𝑟 𝑦)) → 𝑦 = 𝑥)
1211expr 458 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑦𝑦 = 𝑥))
13 breq2 5085 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹𝑟 𝑦𝐹𝑟 𝑥))
143, 13syl5ibrcom 247 . . . . . . . . . . 11 ((𝜑𝐹𝑟 𝑥) → (𝑦 = 𝑥𝐹𝑟 𝑦))
1512, 14impbid 211 . . . . . . . . . 10 ((𝜑𝐹𝑟 𝑥) → (𝐹𝑟 𝑦𝑦 = 𝑥))
1615adantr 482 . . . . . . . . 9 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹𝑟 𝑦𝑦 = 𝑥))
1716iota5 6441 . . . . . . . 8 (((𝜑𝐹𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑦𝐹𝑟 𝑦) = 𝑥)
1817elvd 3444 . . . . . . 7 ((𝜑𝐹𝑟 𝑥) → (℩𝑦𝐹𝑟 𝑦) = 𝑥)
194, 18eqtrid 2788 . . . . . 6 ((𝜑𝐹𝑟 𝑥) → ( ⇝𝑟𝐹) = 𝑥)
203, 19breqtrrd 5109 . . . . 5 ((𝜑𝐹𝑟 𝑥) → 𝐹𝑟 ( ⇝𝑟𝐹))
2120ex 414 . . . 4 (𝜑 → (𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟𝐹)))
2221exlimdv 1934 . . 3 (𝜑 → (∃𝑥 𝐹𝑟 𝑥𝐹𝑟 ( ⇝𝑟𝐹)))
232, 22syl5 34 . 2 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))
24 rlimrel 15247 . . 3 Rel ⇝𝑟
2524releldmi 5869 . 2 (𝐹𝑟 ( ⇝𝑟𝐹) → 𝐹 ∈ dom ⇝𝑟 )
2623, 25impbid1 224 1 (𝜑 → (𝐹 ∈ dom ⇝𝑟𝐹𝑟 ( ⇝𝑟𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wex 1779  wcel 2104  Vcvv 3437   class class class wbr 5081  dom cdm 5600  cio 6408  wf 6454  cfv 6458  supcsup 9243  cc 10915  +∞cpnf 11052  *cxr 11054   < clt 11055  𝑟 crli 15239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-pm 8649  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9245  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-n0 12280  df-z 12366  df-uz 12629  df-rp 12777  df-seq 13768  df-exp 13829  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-rlim 15243
This theorem is referenced by:  caucvgrlem2  15431  caucvg  15435  dchrisum0lem3  26712
  Copyright terms: Public domain W3C validator