![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimdm | Structured version Visualization version GIF version |
Description: Two ways to express that a function has a limit. (The expression ( βπ βπΉ) is sometimes useful as a shorthand for "the unique limit of the function πΉ"). (Contributed by Mario Carneiro, 8-May-2016.) |
Ref | Expression |
---|---|
rlimuni.1 | β’ (π β πΉ:π΄βΆβ) |
rlimuni.2 | β’ (π β sup(π΄, β*, < ) = +β) |
Ref | Expression |
---|---|
rlimdm | β’ (π β (πΉ β dom βπ β πΉ βπ ( βπ βπΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5898 | . . . 4 β’ (πΉ β dom βπ β (πΉ β dom βπ β βπ₯ πΉ βπ π₯)) | |
2 | 1 | ibi 267 | . . 3 β’ (πΉ β dom βπ β βπ₯ πΉ βπ π₯) |
3 | simpr 484 | . . . . . 6 β’ ((π β§ πΉ βπ π₯) β πΉ βπ π₯) | |
4 | df-fv 6551 | . . . . . . 7 β’ ( βπ βπΉ) = (β©π¦πΉ βπ π¦) | |
5 | rlimuni.1 | . . . . . . . . . . . . . 14 β’ (π β πΉ:π΄βΆβ) | |
6 | 5 | adantr 480 | . . . . . . . . . . . . 13 β’ ((π β§ (πΉ βπ π₯ β§ πΉ βπ π¦)) β πΉ:π΄βΆβ) |
7 | rlimuni.2 | . . . . . . . . . . . . . 14 β’ (π β sup(π΄, β*, < ) = +β) | |
8 | 7 | adantr 480 | . . . . . . . . . . . . 13 β’ ((π β§ (πΉ βπ π₯ β§ πΉ βπ π¦)) β sup(π΄, β*, < ) = +β) |
9 | simprr 770 | . . . . . . . . . . . . 13 β’ ((π β§ (πΉ βπ π₯ β§ πΉ βπ π¦)) β πΉ βπ π¦) | |
10 | simprl 768 | . . . . . . . . . . . . 13 β’ ((π β§ (πΉ βπ π₯ β§ πΉ βπ π¦)) β πΉ βπ π₯) | |
11 | 6, 8, 9, 10 | rlimuni 15499 | . . . . . . . . . . . 12 β’ ((π β§ (πΉ βπ π₯ β§ πΉ βπ π¦)) β π¦ = π₯) |
12 | 11 | expr 456 | . . . . . . . . . . 11 β’ ((π β§ πΉ βπ π₯) β (πΉ βπ π¦ β π¦ = π₯)) |
13 | breq2 5152 | . . . . . . . . . . . 12 β’ (π¦ = π₯ β (πΉ βπ π¦ β πΉ βπ π₯)) | |
14 | 3, 13 | syl5ibrcom 246 | . . . . . . . . . . 11 β’ ((π β§ πΉ βπ π₯) β (π¦ = π₯ β πΉ βπ π¦)) |
15 | 12, 14 | impbid 211 | . . . . . . . . . 10 β’ ((π β§ πΉ βπ π₯) β (πΉ βπ π¦ β π¦ = π₯)) |
16 | 15 | adantr 480 | . . . . . . . . 9 β’ (((π β§ πΉ βπ π₯) β§ π₯ β V) β (πΉ βπ π¦ β π¦ = π₯)) |
17 | 16 | iota5 6526 | . . . . . . . 8 β’ (((π β§ πΉ βπ π₯) β§ π₯ β V) β (β©π¦πΉ βπ π¦) = π₯) |
18 | 17 | elvd 3480 | . . . . . . 7 β’ ((π β§ πΉ βπ π₯) β (β©π¦πΉ βπ π¦) = π₯) |
19 | 4, 18 | eqtrid 2783 | . . . . . 6 β’ ((π β§ πΉ βπ π₯) β ( βπ βπΉ) = π₯) |
20 | 3, 19 | breqtrrd 5176 | . . . . 5 β’ ((π β§ πΉ βπ π₯) β πΉ βπ ( βπ βπΉ)) |
21 | 20 | ex 412 | . . . 4 β’ (π β (πΉ βπ π₯ β πΉ βπ ( βπ βπΉ))) |
22 | 21 | exlimdv 1935 | . . 3 β’ (π β (βπ₯ πΉ βπ π₯ β πΉ βπ ( βπ βπΉ))) |
23 | 2, 22 | syl5 34 | . 2 β’ (π β (πΉ β dom βπ β πΉ βπ ( βπ βπΉ))) |
24 | rlimrel 15442 | . . 3 β’ Rel βπ | |
25 | 24 | releldmi 5947 | . 2 β’ (πΉ βπ ( βπ βπΉ) β πΉ β dom βπ ) |
26 | 23, 25 | impbid1 224 | 1 β’ (π β (πΉ β dom βπ β πΉ βπ ( βπ βπΉ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 βwex 1780 β wcel 2105 Vcvv 3473 class class class wbr 5148 dom cdm 5676 β©cio 6493 βΆwf 6539 βcfv 6543 supcsup 9438 βcc 11111 +βcpnf 11250 β*cxr 11252 < clt 11253 βπ crli 15434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-pm 8826 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-rlim 15438 |
This theorem is referenced by: caucvgrlem2 15626 caucvg 15630 dchrisum0lem3 27259 |
Copyright terms: Public domain | W3C validator |