![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rlimdm | Structured version Visualization version GIF version |
Description: Two ways to express that a function has a limit. (The expression ( ⇝𝑟 ‘𝐹) is sometimes useful as a shorthand for "the unique limit of the function 𝐹"). (Contributed by Mario Carneiro, 8-May-2016.) |
Ref | Expression |
---|---|
rlimuni.1 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
rlimuni.2 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
Ref | Expression |
---|---|
rlimdm | ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5901 | . . . 4 ⊢ (𝐹 ∈ dom ⇝𝑟 → (𝐹 ∈ dom ⇝𝑟 ↔ ∃𝑥 𝐹 ⇝𝑟 𝑥)) | |
2 | 1 | ibi 266 | . . 3 ⊢ (𝐹 ∈ dom ⇝𝑟 → ∃𝑥 𝐹 ⇝𝑟 𝑥) |
3 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → 𝐹 ⇝𝑟 𝑥) | |
4 | df-fv 6557 | . . . . . . 7 ⊢ ( ⇝𝑟 ‘𝐹) = (℩𝑦𝐹 ⇝𝑟 𝑦) | |
5 | rlimuni.1 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
6 | 5 | adantr 479 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹:𝐴⟶ℂ) |
7 | rlimuni.2 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
8 | 7 | adantr 479 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → sup(𝐴, ℝ*, < ) = +∞) |
9 | simprr 771 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹 ⇝𝑟 𝑦) | |
10 | simprl 769 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝐹 ⇝𝑟 𝑥) | |
11 | 6, 8, 9, 10 | rlimuni 15530 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝐹 ⇝𝑟 𝑥 ∧ 𝐹 ⇝𝑟 𝑦)) → 𝑦 = 𝑥) |
12 | 11 | expr 455 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝐹 ⇝𝑟 𝑦 → 𝑦 = 𝑥)) |
13 | breq2 5153 | . . . . . . . . . . . 12 ⊢ (𝑦 = 𝑥 → (𝐹 ⇝𝑟 𝑦 ↔ 𝐹 ⇝𝑟 𝑥)) | |
14 | 3, 13 | syl5ibrcom 246 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝑦 = 𝑥 → 𝐹 ⇝𝑟 𝑦)) |
15 | 12, 14 | impbid 211 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥)) |
16 | 15 | adantr 479 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) ∧ 𝑥 ∈ V) → (𝐹 ⇝𝑟 𝑦 ↔ 𝑦 = 𝑥)) |
17 | 16 | iota5 6532 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) ∧ 𝑥 ∈ V) → (℩𝑦𝐹 ⇝𝑟 𝑦) = 𝑥) |
18 | 17 | elvd 3468 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → (℩𝑦𝐹 ⇝𝑟 𝑦) = 𝑥) |
19 | 4, 18 | eqtrid 2777 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → ( ⇝𝑟 ‘𝐹) = 𝑥) |
20 | 3, 19 | breqtrrd 5177 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ⇝𝑟 𝑥) → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹)) |
21 | 20 | ex 411 | . . . 4 ⊢ (𝜑 → (𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
22 | 21 | exlimdv 1928 | . . 3 ⊢ (𝜑 → (∃𝑥 𝐹 ⇝𝑟 𝑥 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
23 | 2, 22 | syl5 34 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 → 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
24 | rlimrel 15473 | . . 3 ⊢ Rel ⇝𝑟 | |
25 | 24 | releldmi 5950 | . 2 ⊢ (𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹) → 𝐹 ∈ dom ⇝𝑟 ) |
26 | 23, 25 | impbid1 224 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3461 class class class wbr 5149 dom cdm 5678 ℩cio 6499 ⟶wf 6545 ‘cfv 6549 supcsup 9465 ℂcc 11138 +∞cpnf 11277 ℝ*cxr 11279 < clt 11280 ⇝𝑟 crli 15465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-pre-sup 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9467 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-div 11904 df-nn 12246 df-2 12308 df-3 12309 df-n0 12506 df-z 12592 df-uz 12856 df-rp 13010 df-seq 14003 df-exp 14063 df-cj 15082 df-re 15083 df-im 15084 df-sqrt 15218 df-abs 15219 df-rlim 15469 |
This theorem is referenced by: caucvgrlem2 15657 caucvg 15661 dchrisum0lem3 27497 |
Copyright terms: Public domain | W3C validator |