Proof of Theorem caucvgrlem2
Step | Hyp | Ref
| Expression |
1 | | caucvgrlem2.5 |
. . 3
⊢ 𝐻:ℂ⟶ℝ |
2 | | caucvgr.2 |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
3 | | fcompt 7005 |
. . 3
⊢ ((𝐻:ℂ⟶ℝ ∧
𝐹:𝐴⟶ℂ) → (𝐻 ∘ 𝐹) = (𝑛 ∈ 𝐴 ↦ (𝐻‘(𝐹‘𝑛)))) |
4 | 1, 2, 3 | sylancr 587 |
. 2
⊢ (𝜑 → (𝐻 ∘ 𝐹) = (𝑛 ∈ 𝐴 ↦ (𝐻‘(𝐹‘𝑛)))) |
5 | | caucvgr.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
6 | | fco 6624 |
. . . . . 6
⊢ ((𝐻:ℂ⟶ℝ ∧
𝐹:𝐴⟶ℂ) → (𝐻 ∘ 𝐹):𝐴⟶ℝ) |
7 | 1, 2, 6 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (𝐻 ∘ 𝐹):𝐴⟶ℝ) |
8 | | caucvgr.3 |
. . . . 5
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
+∞) |
9 | | caucvgr.4 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
10 | 2 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → 𝐹:𝐴⟶ℂ) |
11 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ 𝐴) |
12 | 10, 11 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑘) ∈ ℂ) |
13 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → 𝑗 ∈ 𝐴) |
14 | 10, 13 | ffvelrnd 6962 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑗) ∈ ℂ) |
15 | | caucvgrlem2.6 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
16 | 12, 14, 15 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
17 | 1 | ffvelrni 6960 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑘) ∈ ℂ → (𝐻‘(𝐹‘𝑘)) ∈ ℝ) |
18 | 12, 17 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (𝐻‘(𝐹‘𝑘)) ∈ ℝ) |
19 | 1 | ffvelrni 6960 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑗) ∈ ℂ → (𝐻‘(𝐹‘𝑗)) ∈ ℝ) |
20 | 14, 19 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (𝐻‘(𝐹‘𝑗)) ∈ ℝ) |
21 | 18, 20 | resubcld 11403 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → ((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗))) ∈ ℝ) |
22 | 21 | recnd 11003 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → ((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗))) ∈ ℂ) |
23 | 22 | abscld 15148 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) ∈ ℝ) |
24 | 12, 14 | subcld 11332 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → ((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ) |
25 | 24 | abscld 15148 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∈ ℝ) |
26 | | rpre 12738 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
27 | 26 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → 𝑥 ∈ ℝ) |
28 | | lelttr 11065 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → (abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) < 𝑥)) |
29 | 23, 25, 27, 28 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (((abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → (abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) < 𝑥)) |
30 | 16, 29 | mpand 692 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → (abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) < 𝑥)) |
31 | | fvco3 6867 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑘 ∈ 𝐴) → ((𝐻 ∘ 𝐹)‘𝑘) = (𝐻‘(𝐹‘𝑘))) |
32 | 10, 11, 31 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → ((𝐻 ∘ 𝐹)‘𝑘) = (𝐻‘(𝐹‘𝑘))) |
33 | | fvco3 6867 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑗 ∈ 𝐴) → ((𝐻 ∘ 𝐹)‘𝑗) = (𝐻‘(𝐹‘𝑗))) |
34 | 10, 13, 33 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → ((𝐻 ∘ 𝐹)‘𝑗) = (𝐻‘(𝐹‘𝑗))) |
35 | 32, 34 | oveq12d 7293 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (((𝐻 ∘ 𝐹)‘𝑘) − ((𝐻 ∘ 𝐹)‘𝑗)) = ((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) |
36 | 35 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → (abs‘(((𝐻 ∘ 𝐹)‘𝑘) − ((𝐻 ∘ 𝐹)‘𝑗))) = (abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗))))) |
37 | 36 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → ((abs‘(((𝐻 ∘ 𝐹)‘𝑘) − ((𝐻 ∘ 𝐹)‘𝑗))) < 𝑥 ↔ (abs‘((𝐻‘(𝐹‘𝑘)) − (𝐻‘(𝐹‘𝑗)))) < 𝑥)) |
38 | 30, 37 | sylibrd 258 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 → (abs‘(((𝐻 ∘ 𝐹)‘𝑘) − ((𝐻 ∘ 𝐹)‘𝑗))) < 𝑥)) |
39 | 38 | imim2d 57 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴)) → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → (𝑗 ≤ 𝑘 → (abs‘(((𝐻 ∘ 𝐹)‘𝑘) − ((𝐻 ∘ 𝐹)‘𝑗))) < 𝑥))) |
40 | 39 | anassrs 468 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → ((𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → (𝑗 ≤ 𝑘 → (abs‘(((𝐻 ∘ 𝐹)‘𝑘) − ((𝐻 ∘ 𝐹)‘𝑗))) < 𝑥))) |
41 | 40 | ralimdva 3108 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ 𝐴) → (∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘(((𝐻 ∘ 𝐹)‘𝑘) − ((𝐻 ∘ 𝐹)‘𝑗))) < 𝑥))) |
42 | 41 | reximdva 3203 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘(((𝐻 ∘ 𝐹)‘𝑘) − ((𝐻 ∘ 𝐹)‘𝑗))) < 𝑥))) |
43 | 42 | ralimdva 3108 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘(((𝐻 ∘ 𝐹)‘𝑘) − ((𝐻 ∘ 𝐹)‘𝑗))) < 𝑥))) |
44 | 9, 43 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘(((𝐻 ∘ 𝐹)‘𝑘) − ((𝐻 ∘ 𝐹)‘𝑗))) < 𝑥)) |
45 | 5, 7, 8, 44 | caurcvgr 15385 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ 𝐹) ⇝𝑟 (lim
sup‘(𝐻 ∘ 𝐹))) |
46 | | rlimrel 15202 |
. . . . 5
⊢ Rel
⇝𝑟 |
47 | 46 | releldmi 5857 |
. . . 4
⊢ ((𝐻 ∘ 𝐹) ⇝𝑟 (lim
sup‘(𝐻 ∘ 𝐹)) → (𝐻 ∘ 𝐹) ∈ dom ⇝𝑟
) |
48 | 45, 47 | syl 17 |
. . 3
⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ dom ⇝𝑟
) |
49 | | ax-resscn 10928 |
. . . . 5
⊢ ℝ
⊆ ℂ |
50 | | fss 6617 |
. . . . 5
⊢ (((𝐻 ∘ 𝐹):𝐴⟶ℝ ∧ ℝ ⊆
ℂ) → (𝐻 ∘
𝐹):𝐴⟶ℂ) |
51 | 7, 49, 50 | sylancl 586 |
. . . 4
⊢ (𝜑 → (𝐻 ∘ 𝐹):𝐴⟶ℂ) |
52 | 51, 8 | rlimdm 15260 |
. . 3
⊢ (𝜑 → ((𝐻 ∘ 𝐹) ∈ dom ⇝𝑟
↔ (𝐻 ∘ 𝐹) ⇝𝑟 (
⇝𝑟 ‘(𝐻 ∘ 𝐹)))) |
53 | 48, 52 | mpbid 231 |
. 2
⊢ (𝜑 → (𝐻 ∘ 𝐹) ⇝𝑟 (
⇝𝑟 ‘(𝐻 ∘ 𝐹))) |
54 | 4, 53 | eqbrtrrd 5098 |
1
⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (𝐻‘(𝐹‘𝑛))) ⇝𝑟 (
⇝𝑟 ‘(𝐻 ∘ 𝐹))) |