MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem2 Structured version   Visualization version   GIF version

Theorem caucvgrlem2 15723
Description: Lemma for caucvgr 15724. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1 (𝜑𝐴 ⊆ ℝ)
caucvgr.2 (𝜑𝐹:𝐴⟶ℂ)
caucvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caucvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
caucvgrlem2.5 𝐻:ℂ⟶ℝ
caucvgrlem2.6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
Assertion
Ref Expression
caucvgrlem2 (𝜑 → (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
Distinct variable groups:   𝑗,𝑘,𝑛,𝑥,𝐴   𝑗,𝐹,𝑘,𝑛,𝑥   𝑗,𝐻,𝑘,𝑛,𝑥   𝜑,𝑗,𝑘,𝑛,𝑥

Proof of Theorem caucvgrlem2
StepHypRef Expression
1 caucvgrlem2.5 . . 3 𝐻:ℂ⟶ℝ
2 caucvgr.2 . . 3 (𝜑𝐹:𝐴⟶ℂ)
3 fcompt 7167 . . 3 ((𝐻:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (𝐻𝐹) = (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))))
41, 2, 3sylancr 586 . 2 (𝜑 → (𝐻𝐹) = (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))))
5 caucvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
6 fco 6771 . . . . . 6 ((𝐻:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (𝐻𝐹):𝐴⟶ℝ)
71, 2, 6sylancr 586 . . . . 5 (𝜑 → (𝐻𝐹):𝐴⟶ℝ)
8 caucvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
9 caucvgr.4 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
102ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝐹:𝐴⟶ℂ)
11 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑘𝐴)
1210, 11ffvelcdmd 7119 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐹𝑘) ∈ ℂ)
13 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑗𝐴)
1410, 13ffvelcdmd 7119 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐹𝑗) ∈ ℂ)
15 caucvgrlem2.6 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1612, 14, 15syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
171ffvelcdmi 7117 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) ∈ ℂ → (𝐻‘(𝐹𝑘)) ∈ ℝ)
1812, 17syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐻‘(𝐹𝑘)) ∈ ℝ)
191ffvelcdmi 7117 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∈ ℂ → (𝐻‘(𝐹𝑗)) ∈ ℝ)
2014, 19syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐻‘(𝐹𝑗)) ∈ ℝ)
2118, 20resubcld 11718 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))) ∈ ℝ)
2221recnd 11318 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))) ∈ ℂ)
2322abscld 15485 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ∈ ℝ)
2412, 14subcld 11647 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
2524abscld 15485 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
26 rpre 13065 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2726ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑥 ∈ ℝ)
28 lelttr 11380 . . . . . . . . . . . . . 14 (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
2923, 25, 27, 28syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
3016, 29mpand 694 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
31 fvco3 7021 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℂ ∧ 𝑘𝐴) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
3210, 11, 31syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
33 fvco3 7021 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℂ ∧ 𝑗𝐴) → ((𝐻𝐹)‘𝑗) = (𝐻‘(𝐹𝑗)))
3410, 13, 33syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻𝐹)‘𝑗) = (𝐻‘(𝐹𝑗)))
3532, 34oveq12d 7466 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗)) = ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))))
3635fveq2d 6924 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) = (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))))
3736breq1d 5176 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥 ↔ (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
3830, 37sylibrd 259 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥))
3938imim2d 57 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4039anassrs 467 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝐴) ∧ 𝑘𝐴) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4140ralimdva 3173 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝐴) → (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4241reximdva 3174 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4342ralimdva 3173 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
449, 43mpd 15 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥))
455, 7, 8, 44caurcvgr 15722 . . . 4 (𝜑 → (𝐻𝐹) ⇝𝑟 (lim sup‘(𝐻𝐹)))
46 rlimrel 15539 . . . . 5 Rel ⇝𝑟
4746releldmi 5973 . . . 4 ((𝐻𝐹) ⇝𝑟 (lim sup‘(𝐻𝐹)) → (𝐻𝐹) ∈ dom ⇝𝑟 )
4845, 47syl 17 . . 3 (𝜑 → (𝐻𝐹) ∈ dom ⇝𝑟 )
49 ax-resscn 11241 . . . . 5 ℝ ⊆ ℂ
50 fss 6763 . . . . 5 (((𝐻𝐹):𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → (𝐻𝐹):𝐴⟶ℂ)
517, 49, 50sylancl 585 . . . 4 (𝜑 → (𝐻𝐹):𝐴⟶ℂ)
5251, 8rlimdm 15597 . . 3 (𝜑 → ((𝐻𝐹) ∈ dom ⇝𝑟 ↔ (𝐻𝐹) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹))))
5348, 52mpbid 232 . 2 (𝜑 → (𝐻𝐹) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
544, 53eqbrtrrd 5190 1 (𝜑 → (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520  +crp 13057  abscabs 15283  lim supclsp 15516  𝑟 crli 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-rlim 15535
This theorem is referenced by:  caucvgr  15724
  Copyright terms: Public domain W3C validator