MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem2 Structured version   Visualization version   GIF version

Theorem caucvgrlem2 15485
Description: Lemma for caucvgr 15486. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1 (𝜑𝐴 ⊆ ℝ)
caucvgr.2 (𝜑𝐹:𝐴⟶ℂ)
caucvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caucvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
caucvgrlem2.5 𝐻:ℂ⟶ℝ
caucvgrlem2.6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
Assertion
Ref Expression
caucvgrlem2 (𝜑 → (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
Distinct variable groups:   𝑗,𝑘,𝑛,𝑥,𝐴   𝑗,𝐹,𝑘,𝑛,𝑥   𝑗,𝐻,𝑘,𝑛,𝑥   𝜑,𝑗,𝑘,𝑛,𝑥

Proof of Theorem caucvgrlem2
StepHypRef Expression
1 caucvgrlem2.5 . . 3 𝐻:ℂ⟶ℝ
2 caucvgr.2 . . 3 (𝜑𝐹:𝐴⟶ℂ)
3 fcompt 7065 . . 3 ((𝐻:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (𝐻𝐹) = (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))))
41, 2, 3sylancr 588 . 2 (𝜑 → (𝐻𝐹) = (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))))
5 caucvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
6 fco 6679 . . . . . 6 ((𝐻:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (𝐻𝐹):𝐴⟶ℝ)
71, 2, 6sylancr 588 . . . . 5 (𝜑 → (𝐻𝐹):𝐴⟶ℝ)
8 caucvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
9 caucvgr.4 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
102ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝐹:𝐴⟶ℂ)
11 simprr 771 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑘𝐴)
1210, 11ffvelcdmd 7022 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐹𝑘) ∈ ℂ)
13 simprl 769 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑗𝐴)
1410, 13ffvelcdmd 7022 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐹𝑗) ∈ ℂ)
15 caucvgrlem2.6 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1612, 14, 15syl2anc 585 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
171ffvelcdmi 7020 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) ∈ ℂ → (𝐻‘(𝐹𝑘)) ∈ ℝ)
1812, 17syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐻‘(𝐹𝑘)) ∈ ℝ)
191ffvelcdmi 7020 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∈ ℂ → (𝐻‘(𝐹𝑗)) ∈ ℝ)
2014, 19syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐻‘(𝐹𝑗)) ∈ ℝ)
2118, 20resubcld 11508 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))) ∈ ℝ)
2221recnd 11108 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))) ∈ ℂ)
2322abscld 15247 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ∈ ℝ)
2412, 14subcld 11437 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
2524abscld 15247 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
26 rpre 12843 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2726ad2antlr 725 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑥 ∈ ℝ)
28 lelttr 11170 . . . . . . . . . . . . . 14 (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
2923, 25, 27, 28syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
3016, 29mpand 693 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
31 fvco3 6927 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℂ ∧ 𝑘𝐴) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
3210, 11, 31syl2anc 585 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
33 fvco3 6927 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℂ ∧ 𝑗𝐴) → ((𝐻𝐹)‘𝑗) = (𝐻‘(𝐹𝑗)))
3410, 13, 33syl2anc 585 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻𝐹)‘𝑗) = (𝐻‘(𝐹𝑗)))
3532, 34oveq12d 7359 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗)) = ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))))
3635fveq2d 6833 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) = (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))))
3736breq1d 5106 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥 ↔ (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
3830, 37sylibrd 259 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥))
3938imim2d 57 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4039anassrs 469 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝐴) ∧ 𝑘𝐴) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4140ralimdva 3161 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝐴) → (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4241reximdva 3162 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4342ralimdva 3161 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
449, 43mpd 15 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥))
455, 7, 8, 44caurcvgr 15484 . . . 4 (𝜑 → (𝐻𝐹) ⇝𝑟 (lim sup‘(𝐻𝐹)))
46 rlimrel 15301 . . . . 5 Rel ⇝𝑟
4746releldmi 5893 . . . 4 ((𝐻𝐹) ⇝𝑟 (lim sup‘(𝐻𝐹)) → (𝐻𝐹) ∈ dom ⇝𝑟 )
4845, 47syl 17 . . 3 (𝜑 → (𝐻𝐹) ∈ dom ⇝𝑟 )
49 ax-resscn 11033 . . . . 5 ℝ ⊆ ℂ
50 fss 6672 . . . . 5 (((𝐻𝐹):𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → (𝐻𝐹):𝐴⟶ℂ)
517, 49, 50sylancl 587 . . . 4 (𝜑 → (𝐻𝐹):𝐴⟶ℂ)
5251, 8rlimdm 15359 . . 3 (𝜑 → ((𝐻𝐹) ∈ dom ⇝𝑟 ↔ (𝐻𝐹) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹))))
5348, 52mpbid 231 . 2 (𝜑 → (𝐻𝐹) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
544, 53eqbrtrrd 5120 1 (𝜑 → (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  wral 3062  wrex 3071  wss 3901   class class class wbr 5096  cmpt 5179  dom cdm 5624  ccom 5628  wf 6479  cfv 6483  (class class class)co 7341  supcsup 9301  cc 10974  cr 10975  +∞cpnf 11111  *cxr 11113   < clt 11114  cle 11115  cmin 11310  +crp 12835  abscabs 15044  lim supclsp 15278  𝑟 crli 15293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-er 8573  df-pm 8693  df-en 8809  df-dom 8810  df-sdom 8811  df-sup 9303  df-inf 9304  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-n0 12339  df-z 12425  df-uz 12688  df-rp 12836  df-ico 13190  df-seq 13827  df-exp 13888  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-rlim 15297
This theorem is referenced by:  caucvgr  15486
  Copyright terms: Public domain W3C validator