MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem2 Structured version   Visualization version   GIF version

Theorem caucvgrlem2 15577
Description: Lemma for caucvgr 15578. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1 (𝜑𝐴 ⊆ ℝ)
caucvgr.2 (𝜑𝐹:𝐴⟶ℂ)
caucvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caucvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
caucvgrlem2.5 𝐻:ℂ⟶ℝ
caucvgrlem2.6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
Assertion
Ref Expression
caucvgrlem2 (𝜑 → (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
Distinct variable groups:   𝑗,𝑘,𝑛,𝑥,𝐴   𝑗,𝐹,𝑘,𝑛,𝑥   𝑗,𝐻,𝑘,𝑛,𝑥   𝜑,𝑗,𝑘,𝑛,𝑥

Proof of Theorem caucvgrlem2
StepHypRef Expression
1 caucvgrlem2.5 . . 3 𝐻:ℂ⟶ℝ
2 caucvgr.2 . . 3 (𝜑𝐹:𝐴⟶ℂ)
3 fcompt 7061 . . 3 ((𝐻:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (𝐻𝐹) = (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))))
41, 2, 3sylancr 587 . 2 (𝜑 → (𝐻𝐹) = (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))))
5 caucvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
6 fco 6670 . . . . . 6 ((𝐻:ℂ⟶ℝ ∧ 𝐹:𝐴⟶ℂ) → (𝐻𝐹):𝐴⟶ℝ)
71, 2, 6sylancr 587 . . . . 5 (𝜑 → (𝐻𝐹):𝐴⟶ℝ)
8 caucvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
9 caucvgr.4 . . . . . 6 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
102ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝐹:𝐴⟶ℂ)
11 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑘𝐴)
1210, 11ffvelcdmd 7013 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐹𝑘) ∈ ℂ)
13 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑗𝐴)
1410, 13ffvelcdmd 7013 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐹𝑗) ∈ ℂ)
15 caucvgrlem2.6 . . . . . . . . . . . . . 14 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1612, 14, 15syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
171ffvelcdmi 7011 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑘) ∈ ℂ → (𝐻‘(𝐹𝑘)) ∈ ℝ)
1812, 17syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐻‘(𝐹𝑘)) ∈ ℝ)
191ffvelcdmi 7011 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑗) ∈ ℂ → (𝐻‘(𝐹𝑗)) ∈ ℝ)
2014, 19syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (𝐻‘(𝐹𝑗)) ∈ ℝ)
2118, 20resubcld 11540 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))) ∈ ℝ)
2221recnd 11135 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))) ∈ ℂ)
2322abscld 15341 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ∈ ℝ)
2412, 14subcld 11467 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
2524abscld 15341 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
26 rpre 12894 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
2726ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → 𝑥 ∈ ℝ)
28 lelttr 11198 . . . . . . . . . . . . . 14 (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
2923, 25, 27, 28syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (((abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
3016, 29mpand 695 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
31 fvco3 6916 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℂ ∧ 𝑘𝐴) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
3210, 11, 31syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
33 fvco3 6916 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶ℂ ∧ 𝑗𝐴) → ((𝐻𝐹)‘𝑗) = (𝐻‘(𝐹𝑗)))
3410, 13, 33syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝐻𝐹)‘𝑗) = (𝐻‘(𝐹𝑗)))
3532, 34oveq12d 7359 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗)) = ((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗))))
3635fveq2d 6821 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) = (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))))
3736breq1d 5096 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥 ↔ (abs‘((𝐻‘(𝐹𝑘)) − (𝐻‘(𝐹𝑗)))) < 𝑥))
3830, 37sylibrd 259 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥))
3938imim2d 57 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝐴𝑘𝐴)) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4039anassrs 467 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝐴) ∧ 𝑘𝐴) → ((𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4140ralimdva 3144 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝐴) → (∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4241reximdva 3145 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
4342ralimdva 3144 . . . . . 6 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥)))
449, 43mpd 15 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘(((𝐻𝐹)‘𝑘) − ((𝐻𝐹)‘𝑗))) < 𝑥))
455, 7, 8, 44caurcvgr 15576 . . . 4 (𝜑 → (𝐻𝐹) ⇝𝑟 (lim sup‘(𝐻𝐹)))
46 rlimrel 15395 . . . . 5 Rel ⇝𝑟
4746releldmi 5883 . . . 4 ((𝐻𝐹) ⇝𝑟 (lim sup‘(𝐻𝐹)) → (𝐻𝐹) ∈ dom ⇝𝑟 )
4845, 47syl 17 . . 3 (𝜑 → (𝐻𝐹) ∈ dom ⇝𝑟 )
49 ax-resscn 11058 . . . . 5 ℝ ⊆ ℂ
50 fss 6662 . . . . 5 (((𝐻𝐹):𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → (𝐻𝐹):𝐴⟶ℂ)
517, 49, 50sylancl 586 . . . 4 (𝜑 → (𝐻𝐹):𝐴⟶ℂ)
5251, 8rlimdm 15453 . . 3 (𝜑 → ((𝐻𝐹) ∈ dom ⇝𝑟 ↔ (𝐻𝐹) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹))))
5348, 52mpbid 232 . 2 (𝜑 → (𝐻𝐹) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
544, 53eqbrtrrd 5110 1 (𝜑 → (𝑛𝐴 ↦ (𝐻‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(𝐻𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897   class class class wbr 5086  cmpt 5167  dom cdm 5611  ccom 5615  wf 6472  cfv 6476  (class class class)co 7341  supcsup 9319  cc 10999  cr 11000  +∞cpnf 11138  *cxr 11140   < clt 11141  cle 11142  cmin 11339  +crp 12885  abscabs 15136  lim supclsp 15372  𝑟 crli 15387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ico 13246  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-rlim 15391
This theorem is referenced by:  caucvgr  15578
  Copyright terms: Public domain W3C validator