| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caucvgr | Structured version Visualization version GIF version | ||
| Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.) |
| Ref | Expression |
|---|---|
| caucvgr.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| caucvgr.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| caucvgr.3 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
| caucvgr.4 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| Ref | Expression |
|---|---|
| caucvgr | ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgr.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 2 | 1 | feqmptd 6946 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐴 ↦ (𝐹‘𝑛))) |
| 3 | 1 | ffvelcdmda 7073 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) ∈ ℂ) |
| 4 | 3 | replimd 15214 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) = ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛))))) |
| 5 | 4 | mpteq2dva 5214 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛)))))) |
| 6 | 2, 5 | eqtrd 2770 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛)))))) |
| 7 | fvexd 6890 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (ℜ‘(𝐹‘𝑛)) ∈ V) | |
| 8 | ovexd 7438 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (i · (ℑ‘(𝐹‘𝑛))) ∈ V) | |
| 9 | caucvgr.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 10 | caucvgr.3 | . . . . 5 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
| 11 | caucvgr.4 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | |
| 12 | ref 15129 | . . . . 5 ⊢ ℜ:ℂ⟶ℝ | |
| 13 | resub 15144 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗))) = ((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗)))) | |
| 14 | 13 | fveq2d 6879 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) = (abs‘((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗))))) |
| 15 | subcl 11479 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → ((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ) | |
| 16 | absrele 15325 | . . . . . . 7 ⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 18 | 14, 17 | eqbrtrrd 5143 | . . . . 5 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 19 | 9, 1, 10, 11, 12, 18 | caucvgrlem2 15689 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℜ ∘ 𝐹))) |
| 20 | ax-icn 11186 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 21 | 20 | elexi 3482 | . . . . . 6 ⊢ i ∈ V |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → i ∈ V) |
| 23 | fvexd 6890 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (ℑ‘(𝐹‘𝑛)) ∈ V) | |
| 24 | rlimconst 15558 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ i ∈ ℂ) → (𝑛 ∈ 𝐴 ↦ i) ⇝𝑟 i) | |
| 25 | 9, 20, 24 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ i) ⇝𝑟 i) |
| 26 | imf 15130 | . . . . . 6 ⊢ ℑ:ℂ⟶ℝ | |
| 27 | imsub 15152 | . . . . . . . 8 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗))) = ((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗)))) | |
| 28 | 27 | fveq2d 6879 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) = (abs‘((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗))))) |
| 29 | absimle 15326 | . . . . . . . 8 ⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
| 30 | 15, 29 | syl 17 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 31 | 28, 30 | eqbrtrrd 5143 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 32 | 9, 1, 10, 11, 26, 31 | caucvgrlem2 15689 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℑ ∘ 𝐹))) |
| 33 | 22, 23, 25, 32 | rlimmul 15659 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (i · (ℑ‘(𝐹‘𝑛)))) ⇝𝑟 (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) |
| 34 | 7, 8, 19, 33 | rlimadd 15657 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛))))) ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))) |
| 35 | 6, 34 | eqbrtrd 5141 | . 2 ⊢ (𝜑 → 𝐹 ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))) |
| 36 | rlimrel 15507 | . . 3 ⊢ Rel ⇝𝑟 | |
| 37 | 36 | releldmi 5928 | . 2 ⊢ (𝐹 ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) → 𝐹 ∈ dom ⇝𝑟 ) |
| 38 | 35, 37 | syl 17 | 1 ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 Vcvv 3459 ⊆ wss 3926 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 supcsup 9450 ℂcc 11125 ℝcr 11126 ici 11129 + caddc 11130 · cmul 11132 +∞cpnf 11264 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 − cmin 11464 ℝ+crp 13006 ℜcre 15114 ℑcim 15115 abscabs 15251 ⇝𝑟 crli 15499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-ico 13366 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-limsup 15485 df-rlim 15503 |
| This theorem is referenced by: caucvg 15693 dvfsumrlim 25988 |
| Copyright terms: Public domain | W3C validator |