![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caucvgr | Structured version Visualization version GIF version |
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.) |
Ref | Expression |
---|---|
caucvgr.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
caucvgr.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
caucvgr.3 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
caucvgr.4 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
Ref | Expression |
---|---|
caucvgr | ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgr.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
2 | 1 | feqmptd 6500 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐴 ↦ (𝐹‘𝑛))) |
3 | 1 | ffvelrnda 6613 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) ∈ ℂ) |
4 | 3 | replimd 14321 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) = ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛))))) |
5 | 4 | mpteq2dva 4969 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛)))))) |
6 | 2, 5 | eqtrd 2861 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛)))))) |
7 | fvexd 6452 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (ℜ‘(𝐹‘𝑛)) ∈ V) | |
8 | ovexd 6944 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (i · (ℑ‘(𝐹‘𝑛))) ∈ V) | |
9 | caucvgr.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
10 | caucvgr.3 | . . . . 5 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
11 | caucvgr.4 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | |
12 | ref 14236 | . . . . 5 ⊢ ℜ:ℂ⟶ℝ | |
13 | resub 14251 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗))) = ((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗)))) | |
14 | 13 | fveq2d 6441 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) = (abs‘((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗))))) |
15 | subcl 10607 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → ((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ) | |
16 | absrele 14432 | . . . . . . 7 ⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
18 | 14, 17 | eqbrtrrd 4899 | . . . . 5 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
19 | 9, 1, 10, 11, 12, 18 | caucvgrlem2 14789 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℜ ∘ 𝐹))) |
20 | ax-icn 10318 | . . . . . . 7 ⊢ i ∈ ℂ | |
21 | 20 | elexi 3430 | . . . . . 6 ⊢ i ∈ V |
22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → i ∈ V) |
23 | fvexd 6452 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (ℑ‘(𝐹‘𝑛)) ∈ V) | |
24 | rlimconst 14659 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ i ∈ ℂ) → (𝑛 ∈ 𝐴 ↦ i) ⇝𝑟 i) | |
25 | 9, 20, 24 | sylancl 580 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ i) ⇝𝑟 i) |
26 | imf 14237 | . . . . . 6 ⊢ ℑ:ℂ⟶ℝ | |
27 | imsub 14259 | . . . . . . . 8 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗))) = ((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗)))) | |
28 | 27 | fveq2d 6441 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) = (abs‘((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗))))) |
29 | absimle 14433 | . . . . . . . 8 ⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
30 | 15, 29 | syl 17 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
31 | 28, 30 | eqbrtrrd 4899 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
32 | 9, 1, 10, 11, 26, 31 | caucvgrlem2 14789 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℑ ∘ 𝐹))) |
33 | 22, 23, 25, 32 | rlimmul 14759 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (i · (ℑ‘(𝐹‘𝑛)))) ⇝𝑟 (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) |
34 | 7, 8, 19, 33 | rlimadd 14757 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛))))) ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))) |
35 | 6, 34 | eqbrtrd 4897 | . 2 ⊢ (𝜑 → 𝐹 ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))) |
36 | rlimrel 14608 | . . 3 ⊢ Rel ⇝𝑟 | |
37 | 36 | releldmi 5599 | . 2 ⊢ (𝐹 ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) → 𝐹 ∈ dom ⇝𝑟 ) |
38 | 35, 37 | syl 17 | 1 ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ∃wrex 3118 Vcvv 3414 ⊆ wss 3798 class class class wbr 4875 ↦ cmpt 4954 dom cdm 5346 ∘ ccom 5350 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 supcsup 8621 ℂcc 10257 ℝcr 10258 ici 10261 + caddc 10262 · cmul 10264 +∞cpnf 10395 ℝ*cxr 10397 < clt 10398 ≤ cle 10399 − cmin 10592 ℝ+crp 12119 ℜcre 14221 ℑcim 14222 abscabs 14358 ⇝𝑟 crli 14600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-pm 8130 df-en 8229 df-dom 8230 df-sdom 8231 df-sup 8623 df-inf 8624 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-n0 11626 df-z 11712 df-uz 11976 df-rp 12120 df-ico 12476 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-limsup 14586 df-rlim 14604 |
This theorem is referenced by: caucvg 14793 dvfsumrlim 24200 |
Copyright terms: Public domain | W3C validator |