MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgr Structured version   Visualization version   GIF version

Theorem caucvgr 15690
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1 (𝜑𝐴 ⊆ ℝ)
caucvgr.2 (𝜑𝐹:𝐴⟶ℂ)
caucvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caucvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caucvgr (𝜑𝐹 ∈ dom ⇝𝑟 )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥

Proof of Theorem caucvgr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 caucvgr.2 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
21feqmptd 6946 . . . 4 (𝜑𝐹 = (𝑛𝐴 ↦ (𝐹𝑛)))
31ffvelcdmda 7073 . . . . . 6 ((𝜑𝑛𝐴) → (𝐹𝑛) ∈ ℂ)
43replimd 15214 . . . . 5 ((𝜑𝑛𝐴) → (𝐹𝑛) = ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛)))))
54mpteq2dva 5214 . . . 4 (𝜑 → (𝑛𝐴 ↦ (𝐹𝑛)) = (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))))
62, 5eqtrd 2770 . . 3 (𝜑𝐹 = (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))))
7 fvexd 6890 . . . 4 ((𝜑𝑛𝐴) → (ℜ‘(𝐹𝑛)) ∈ V)
8 ovexd 7438 . . . 4 ((𝜑𝑛𝐴) → (i · (ℑ‘(𝐹𝑛))) ∈ V)
9 caucvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
10 caucvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
11 caucvgr.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
12 ref 15129 . . . . 5 ℜ:ℂ⟶ℝ
13 resub 15144 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (ℜ‘((𝐹𝑘) − (𝐹𝑗))) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗))))
1413fveq2d 6879 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) = (abs‘((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗)))))
15 subcl 11479 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
16 absrele 15325 . . . . . . 7 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1715, 16syl 17 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1814, 17eqbrtrrd 5143 . . . . 5 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
199, 1, 10, 11, 12, 18caucvgrlem2 15689 . . . 4 (𝜑 → (𝑛𝐴 ↦ (ℜ‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℜ ∘ 𝐹)))
20 ax-icn 11186 . . . . . . 7 i ∈ ℂ
2120elexi 3482 . . . . . 6 i ∈ V
2221a1i 11 . . . . 5 ((𝜑𝑛𝐴) → i ∈ V)
23 fvexd 6890 . . . . 5 ((𝜑𝑛𝐴) → (ℑ‘(𝐹𝑛)) ∈ V)
24 rlimconst 15558 . . . . . 6 ((𝐴 ⊆ ℝ ∧ i ∈ ℂ) → (𝑛𝐴 ↦ i) ⇝𝑟 i)
259, 20, 24sylancl 586 . . . . 5 (𝜑 → (𝑛𝐴 ↦ i) ⇝𝑟 i)
26 imf 15130 . . . . . 6 ℑ:ℂ⟶ℝ
27 imsub 15152 . . . . . . . 8 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (ℑ‘((𝐹𝑘) − (𝐹𝑗))) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗))))
2827fveq2d 6879 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) = (abs‘((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗)))))
29 absimle 15326 . . . . . . . 8 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
3015, 29syl 17 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
3128, 30eqbrtrrd 5143 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
329, 1, 10, 11, 26, 31caucvgrlem2 15689 . . . . 5 (𝜑 → (𝑛𝐴 ↦ (ℑ‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))
3322, 23, 25, 32rlimmul 15659 . . . 4 (𝜑 → (𝑛𝐴 ↦ (i · (ℑ‘(𝐹𝑛)))) ⇝𝑟 (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))
347, 8, 19, 33rlimadd 15657 . . 3 (𝜑 → (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))) ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))))
356, 34eqbrtrd 5141 . 2 (𝜑𝐹𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))))
36 rlimrel 15507 . . 3 Rel ⇝𝑟
3736releldmi 5928 . 2 (𝐹𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) → 𝐹 ∈ dom ⇝𝑟 )
3835, 37syl 17 1 (𝜑𝐹 ∈ dom ⇝𝑟 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  wss 3926   class class class wbr 5119  cmpt 5201  dom cdm 5654  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  supcsup 9450  cc 11125  cr 11126  ici 11129   + caddc 11130   · cmul 11132  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  cmin 11464  +crp 13006  cre 15114  cim 15115  abscabs 15251  𝑟 crli 15499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9452  df-inf 9453  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-ico 13366  df-seq 14018  df-exp 14078  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-limsup 15485  df-rlim 15503
This theorem is referenced by:  caucvg  15693  dvfsumrlim  25988
  Copyright terms: Public domain W3C validator