| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caucvgr | Structured version Visualization version GIF version | ||
| Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.) |
| Ref | Expression |
|---|---|
| caucvgr.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| caucvgr.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| caucvgr.3 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
| caucvgr.4 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| Ref | Expression |
|---|---|
| caucvgr | ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgr.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 2 | 1 | feqmptd 6952 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐴 ↦ (𝐹‘𝑛))) |
| 3 | 1 | ffvelcdmda 7079 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) ∈ ℂ) |
| 4 | 3 | replimd 15221 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) = ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛))))) |
| 5 | 4 | mpteq2dva 5219 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛)))))) |
| 6 | 2, 5 | eqtrd 2771 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛)))))) |
| 7 | fvexd 6896 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (ℜ‘(𝐹‘𝑛)) ∈ V) | |
| 8 | ovexd 7445 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (i · (ℑ‘(𝐹‘𝑛))) ∈ V) | |
| 9 | caucvgr.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 10 | caucvgr.3 | . . . . 5 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
| 11 | caucvgr.4 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | |
| 12 | ref 15136 | . . . . 5 ⊢ ℜ:ℂ⟶ℝ | |
| 13 | resub 15151 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗))) = ((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗)))) | |
| 14 | 13 | fveq2d 6885 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) = (abs‘((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗))))) |
| 15 | subcl 11486 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → ((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ) | |
| 16 | absrele 15332 | . . . . . . 7 ⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 18 | 14, 17 | eqbrtrrd 5148 | . . . . 5 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 19 | 9, 1, 10, 11, 12, 18 | caucvgrlem2 15696 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℜ ∘ 𝐹))) |
| 20 | ax-icn 11193 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 21 | 20 | elexi 3487 | . . . . . 6 ⊢ i ∈ V |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → i ∈ V) |
| 23 | fvexd 6896 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (ℑ‘(𝐹‘𝑛)) ∈ V) | |
| 24 | rlimconst 15565 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ i ∈ ℂ) → (𝑛 ∈ 𝐴 ↦ i) ⇝𝑟 i) | |
| 25 | 9, 20, 24 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ i) ⇝𝑟 i) |
| 26 | imf 15137 | . . . . . 6 ⊢ ℑ:ℂ⟶ℝ | |
| 27 | imsub 15159 | . . . . . . . 8 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗))) = ((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗)))) | |
| 28 | 27 | fveq2d 6885 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) = (abs‘((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗))))) |
| 29 | absimle 15333 | . . . . . . . 8 ⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
| 30 | 15, 29 | syl 17 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 31 | 28, 30 | eqbrtrrd 5148 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 32 | 9, 1, 10, 11, 26, 31 | caucvgrlem2 15696 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℑ ∘ 𝐹))) |
| 33 | 22, 23, 25, 32 | rlimmul 15666 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (i · (ℑ‘(𝐹‘𝑛)))) ⇝𝑟 (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) |
| 34 | 7, 8, 19, 33 | rlimadd 15664 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛))))) ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))) |
| 35 | 6, 34 | eqbrtrd 5146 | . 2 ⊢ (𝜑 → 𝐹 ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))) |
| 36 | rlimrel 15514 | . . 3 ⊢ Rel ⇝𝑟 | |
| 37 | 36 | releldmi 5933 | . 2 ⊢ (𝐹 ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) → 𝐹 ∈ dom ⇝𝑟 ) |
| 38 | 35, 37 | syl 17 | 1 ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ⊆ wss 3931 class class class wbr 5124 ↦ cmpt 5206 dom cdm 5659 ∘ ccom 5663 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 supcsup 9457 ℂcc 11132 ℝcr 11133 ici 11136 + caddc 11137 · cmul 11139 +∞cpnf 11271 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 − cmin 11471 ℝ+crp 13013 ℜcre 15121 ℑcim 15122 abscabs 15258 ⇝𝑟 crli 15506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-ico 13373 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-rlim 15510 |
| This theorem is referenced by: caucvg 15700 dvfsumrlim 25995 |
| Copyright terms: Public domain | W3C validator |