| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caucvgr | Structured version Visualization version GIF version | ||
| Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.) |
| Ref | Expression |
|---|---|
| caucvgr.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| caucvgr.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| caucvgr.3 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
| caucvgr.4 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
| Ref | Expression |
|---|---|
| caucvgr | ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgr.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 2 | 1 | feqmptd 6929 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐴 ↦ (𝐹‘𝑛))) |
| 3 | 1 | ffvelcdmda 7056 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) ∈ ℂ) |
| 4 | 3 | replimd 15163 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) = ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛))))) |
| 5 | 4 | mpteq2dva 5200 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛)))))) |
| 6 | 2, 5 | eqtrd 2764 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛)))))) |
| 7 | fvexd 6873 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (ℜ‘(𝐹‘𝑛)) ∈ V) | |
| 8 | ovexd 7422 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (i · (ℑ‘(𝐹‘𝑛))) ∈ V) | |
| 9 | caucvgr.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 10 | caucvgr.3 | . . . . 5 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
| 11 | caucvgr.4 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | |
| 12 | ref 15078 | . . . . 5 ⊢ ℜ:ℂ⟶ℝ | |
| 13 | resub 15093 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗))) = ((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗)))) | |
| 14 | 13 | fveq2d 6862 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) = (abs‘((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗))))) |
| 15 | subcl 11420 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → ((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ) | |
| 16 | absrele 15274 | . . . . . . 7 ⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
| 17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 18 | 14, 17 | eqbrtrrd 5131 | . . . . 5 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 19 | 9, 1, 10, 11, 12, 18 | caucvgrlem2 15641 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℜ ∘ 𝐹))) |
| 20 | ax-icn 11127 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 21 | 20 | elexi 3470 | . . . . . 6 ⊢ i ∈ V |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → i ∈ V) |
| 23 | fvexd 6873 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (ℑ‘(𝐹‘𝑛)) ∈ V) | |
| 24 | rlimconst 15510 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ i ∈ ℂ) → (𝑛 ∈ 𝐴 ↦ i) ⇝𝑟 i) | |
| 25 | 9, 20, 24 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ i) ⇝𝑟 i) |
| 26 | imf 15079 | . . . . . 6 ⊢ ℑ:ℂ⟶ℝ | |
| 27 | imsub 15101 | . . . . . . . 8 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗))) = ((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗)))) | |
| 28 | 27 | fveq2d 6862 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) = (abs‘((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗))))) |
| 29 | absimle 15275 | . . . . . . . 8 ⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
| 30 | 15, 29 | syl 17 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 31 | 28, 30 | eqbrtrrd 5131 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
| 32 | 9, 1, 10, 11, 26, 31 | caucvgrlem2 15641 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℑ ∘ 𝐹))) |
| 33 | 22, 23, 25, 32 | rlimmul 15611 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (i · (ℑ‘(𝐹‘𝑛)))) ⇝𝑟 (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) |
| 34 | 7, 8, 19, 33 | rlimadd 15609 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛))))) ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))) |
| 35 | 6, 34 | eqbrtrd 5129 | . 2 ⊢ (𝜑 → 𝐹 ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))) |
| 36 | rlimrel 15459 | . . 3 ⊢ Rel ⇝𝑟 | |
| 37 | 36 | releldmi 5912 | . 2 ⊢ (𝐹 ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) → 𝐹 ∈ dom ⇝𝑟 ) |
| 38 | 35, 37 | syl 17 | 1 ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supcsup 9391 ℂcc 11066 ℝcr 11067 ici 11070 + caddc 11071 · cmul 11073 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 − cmin 11405 ℝ+crp 12951 ℜcre 15063 ℑcim 15064 abscabs 15200 ⇝𝑟 crli 15451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-rlim 15455 |
| This theorem is referenced by: caucvg 15645 dvfsumrlim 25938 |
| Copyright terms: Public domain | W3C validator |