![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caucvgr | Structured version Visualization version GIF version |
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.) |
Ref | Expression |
---|---|
caucvgr.1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
caucvgr.2 | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
caucvgr.3 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) |
caucvgr.4 | ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
Ref | Expression |
---|---|
caucvgr | ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgr.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
2 | 1 | feqmptd 6990 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐴 ↦ (𝐹‘𝑛))) |
3 | 1 | ffvelcdmda 7118 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) ∈ ℂ) |
4 | 3 | replimd 15246 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝐹‘𝑛) = ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛))))) |
5 | 4 | mpteq2dva 5266 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛)))))) |
6 | 2, 5 | eqtrd 2780 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛)))))) |
7 | fvexd 6935 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (ℜ‘(𝐹‘𝑛)) ∈ V) | |
8 | ovexd 7483 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (i · (ℑ‘(𝐹‘𝑛))) ∈ V) | |
9 | caucvgr.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
10 | caucvgr.3 | . . . . 5 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) | |
11 | caucvgr.4 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐴 (𝑗 ≤ 𝑘 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) | |
12 | ref 15161 | . . . . 5 ⊢ ℜ:ℂ⟶ℝ | |
13 | resub 15176 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗))) = ((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗)))) | |
14 | 13 | fveq2d 6924 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) = (abs‘((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗))))) |
15 | subcl 11535 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → ((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ) | |
16 | absrele 15357 | . . . . . . 7 ⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
17 | 15, 16 | syl 17 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
18 | 14, 17 | eqbrtrrd 5190 | . . . . 5 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((ℜ‘(𝐹‘𝑘)) − (ℜ‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
19 | 9, 1, 10, 11, 12, 18 | caucvgrlem2 15723 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (ℜ‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℜ ∘ 𝐹))) |
20 | ax-icn 11243 | . . . . . . 7 ⊢ i ∈ ℂ | |
21 | 20 | elexi 3511 | . . . . . 6 ⊢ i ∈ V |
22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → i ∈ V) |
23 | fvexd 6935 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (ℑ‘(𝐹‘𝑛)) ∈ V) | |
24 | rlimconst 15590 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ i ∈ ℂ) → (𝑛 ∈ 𝐴 ↦ i) ⇝𝑟 i) | |
25 | 9, 20, 24 | sylancl 585 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ i) ⇝𝑟 i) |
26 | imf 15162 | . . . . . 6 ⊢ ℑ:ℂ⟶ℝ | |
27 | imsub 15184 | . . . . . . . 8 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗))) = ((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗)))) | |
28 | 27 | fveq2d 6924 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) = (abs‘((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗))))) |
29 | absimle 15358 | . . . . . . . 8 ⊢ (((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) | |
30 | 15, 29 | syl 17 | . . . . . . 7 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹‘𝑘) − (𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
31 | 28, 30 | eqbrtrrd 5190 | . . . . . 6 ⊢ (((𝐹‘𝑘) ∈ ℂ ∧ (𝐹‘𝑗) ∈ ℂ) → (abs‘((ℑ‘(𝐹‘𝑘)) − (ℑ‘(𝐹‘𝑗)))) ≤ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗)))) |
32 | 9, 1, 10, 11, 26, 31 | caucvgrlem2 15723 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (ℑ‘(𝐹‘𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℑ ∘ 𝐹))) |
33 | 22, 23, 25, 32 | rlimmul 15692 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ (i · (ℑ‘(𝐹‘𝑛)))) ⇝𝑟 (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) |
34 | 7, 8, 19, 33 | rlimadd 15689 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝐴 ↦ ((ℜ‘(𝐹‘𝑛)) + (i · (ℑ‘(𝐹‘𝑛))))) ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))) |
35 | 6, 34 | eqbrtrd 5188 | . 2 ⊢ (𝜑 → 𝐹 ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))) |
36 | rlimrel 15539 | . . 3 ⊢ Rel ⇝𝑟 | |
37 | 36 | releldmi 5973 | . 2 ⊢ (𝐹 ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) → 𝐹 ∈ dom ⇝𝑟 ) |
38 | 35, 37 | syl 17 | 1 ⊢ (𝜑 → 𝐹 ∈ dom ⇝𝑟 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ∘ ccom 5704 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 supcsup 9509 ℂcc 11182 ℝcr 11183 ici 11186 + caddc 11187 · cmul 11189 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 − cmin 11520 ℝ+crp 13057 ℜcre 15146 ℑcim 15147 abscabs 15283 ⇝𝑟 crli 15531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-rlim 15535 |
This theorem is referenced by: caucvg 15727 dvfsumrlim 26092 |
Copyright terms: Public domain | W3C validator |