MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgr Structured version   Visualization version   GIF version

Theorem caucvgr 15724
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1 (𝜑𝐴 ⊆ ℝ)
caucvgr.2 (𝜑𝐹:𝐴⟶ℂ)
caucvgr.3 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
caucvgr.4 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caucvgr (𝜑𝐹 ∈ dom ⇝𝑟 )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥

Proof of Theorem caucvgr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 caucvgr.2 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
21feqmptd 6990 . . . 4 (𝜑𝐹 = (𝑛𝐴 ↦ (𝐹𝑛)))
31ffvelcdmda 7118 . . . . . 6 ((𝜑𝑛𝐴) → (𝐹𝑛) ∈ ℂ)
43replimd 15246 . . . . 5 ((𝜑𝑛𝐴) → (𝐹𝑛) = ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛)))))
54mpteq2dva 5266 . . . 4 (𝜑 → (𝑛𝐴 ↦ (𝐹𝑛)) = (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))))
62, 5eqtrd 2780 . . 3 (𝜑𝐹 = (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))))
7 fvexd 6935 . . . 4 ((𝜑𝑛𝐴) → (ℜ‘(𝐹𝑛)) ∈ V)
8 ovexd 7483 . . . 4 ((𝜑𝑛𝐴) → (i · (ℑ‘(𝐹𝑛))) ∈ V)
9 caucvgr.1 . . . . 5 (𝜑𝐴 ⊆ ℝ)
10 caucvgr.3 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
11 caucvgr.4 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝐴𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
12 ref 15161 . . . . 5 ℜ:ℂ⟶ℝ
13 resub 15176 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (ℜ‘((𝐹𝑘) − (𝐹𝑗))) = ((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗))))
1413fveq2d 6924 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) = (abs‘((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗)))))
15 subcl 11535 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
16 absrele 15357 . . . . . . 7 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1715, 16syl 17 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℜ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
1814, 17eqbrtrrd 5190 . . . . 5 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((ℜ‘(𝐹𝑘)) − (ℜ‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
199, 1, 10, 11, 12, 18caucvgrlem2 15723 . . . 4 (𝜑 → (𝑛𝐴 ↦ (ℜ‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℜ ∘ 𝐹)))
20 ax-icn 11243 . . . . . . 7 i ∈ ℂ
2120elexi 3511 . . . . . 6 i ∈ V
2221a1i 11 . . . . 5 ((𝜑𝑛𝐴) → i ∈ V)
23 fvexd 6935 . . . . 5 ((𝜑𝑛𝐴) → (ℑ‘(𝐹𝑛)) ∈ V)
24 rlimconst 15590 . . . . . 6 ((𝐴 ⊆ ℝ ∧ i ∈ ℂ) → (𝑛𝐴 ↦ i) ⇝𝑟 i)
259, 20, 24sylancl 585 . . . . 5 (𝜑 → (𝑛𝐴 ↦ i) ⇝𝑟 i)
26 imf 15162 . . . . . 6 ℑ:ℂ⟶ℝ
27 imsub 15184 . . . . . . . 8 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (ℑ‘((𝐹𝑘) − (𝐹𝑗))) = ((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗))))
2827fveq2d 6924 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) = (abs‘((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗)))))
29 absimle 15358 . . . . . . . 8 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
3015, 29syl 17 . . . . . . 7 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘(ℑ‘((𝐹𝑘) − (𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
3128, 30eqbrtrrd 5190 . . . . . 6 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → (abs‘((ℑ‘(𝐹𝑘)) − (ℑ‘(𝐹𝑗)))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
329, 1, 10, 11, 26, 31caucvgrlem2 15723 . . . . 5 (𝜑 → (𝑛𝐴 ↦ (ℑ‘(𝐹𝑛))) ⇝𝑟 ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))
3322, 23, 25, 32rlimmul 15692 . . . 4 (𝜑 → (𝑛𝐴 ↦ (i · (ℑ‘(𝐹𝑛)))) ⇝𝑟 (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹))))
347, 8, 19, 33rlimadd 15689 . . 3 (𝜑 → (𝑛𝐴 ↦ ((ℜ‘(𝐹𝑛)) + (i · (ℑ‘(𝐹𝑛))))) ⇝𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))))
356, 34eqbrtrd 5188 . 2 (𝜑𝐹𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))))
36 rlimrel 15539 . . 3 Rel ⇝𝑟
3736releldmi 5973 . 2 (𝐹𝑟 (( ⇝𝑟 ‘(ℜ ∘ 𝐹)) + (i · ( ⇝𝑟 ‘(ℑ ∘ 𝐹)))) → 𝐹 ∈ dom ⇝𝑟 )
3835, 37syl 17 1 (𝜑𝐹 ∈ dom ⇝𝑟 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  dom cdm 5700  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  supcsup 9509  cc 11182  cr 11183  ici 11186   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cmin 11520  +crp 13057  cre 15146  cim 15147  abscabs 15283  𝑟 crli 15531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-rlim 15535
This theorem is referenced by:  caucvg  15727  dvfsumrlim  26092
  Copyright terms: Public domain W3C validator