Step | Hyp | Ref
| Expression |
1 | | frlmup4.f |
. . . 4
β’ πΉ = (π
freeLMod πΌ) |
2 | | eqid 2732 |
. . . 4
β’
(BaseβπΉ) =
(BaseβπΉ) |
3 | | frlmup4.c |
. . . 4
β’ πΆ = (Baseβπ) |
4 | | eqid 2732 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
5 | | eqid 2732 |
. . . 4
β’ (π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) = (π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) |
6 | | simp1 1136 |
. . . 4
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β π β LMod) |
7 | | simp2 1137 |
. . . 4
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β πΌ β π) |
8 | | frlmup4.r |
. . . . 5
β’ π
= (Scalarβπ) |
9 | 8 | a1i 11 |
. . . 4
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β π
= (Scalarβπ)) |
10 | | simp3 1138 |
. . . 4
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β π΄:πΌβΆπΆ) |
11 | 1, 2, 3, 4, 5, 6, 7, 9, 10 | frlmup1 21344 |
. . 3
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β (π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β (πΉ LMHom π)) |
12 | | ovex 7438 |
. . . . . 6
β’ (π Ξ£g
(π₯ βf (
Β·π βπ)π΄)) β V |
13 | 12, 5 | fnmpti 6690 |
. . . . 5
β’ (π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) Fn (BaseβπΉ) |
14 | 8 | lmodring 20471 |
. . . . . . . 8
β’ (π β LMod β π
β Ring) |
15 | 14 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β π
β Ring) |
16 | | frlmup4.u |
. . . . . . . 8
β’ π = (π
unitVec πΌ) |
17 | 16, 1, 2 | uvcff 21337 |
. . . . . . 7
β’ ((π
β Ring β§ πΌ β π) β π:πΌβΆ(BaseβπΉ)) |
18 | 15, 7, 17 | syl2anc 584 |
. . . . . 6
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β π:πΌβΆ(BaseβπΉ)) |
19 | 18 | ffnd 6715 |
. . . . 5
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β π Fn πΌ) |
20 | 18 | frnd 6722 |
. . . . 5
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β ran π β (BaseβπΉ)) |
21 | | fnco 6664 |
. . . . 5
β’ (((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) Fn (BaseβπΉ) β§ π Fn πΌ β§ ran π β (BaseβπΉ)) β ((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β π) Fn πΌ) |
22 | 13, 19, 20, 21 | mp3an2i 1466 |
. . . 4
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β ((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β π) Fn πΌ) |
23 | | ffn 6714 |
. . . . 5
β’ (π΄:πΌβΆπΆ β π΄ Fn πΌ) |
24 | 23 | 3ad2ant3 1135 |
. . . 4
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β π΄ Fn πΌ) |
25 | 18 | adantr 481 |
. . . . . . 7
β’ (((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β§ π¦ β πΌ) β π:πΌβΆ(BaseβπΉ)) |
26 | 25 | ffnd 6715 |
. . . . . 6
β’ (((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β§ π¦ β πΌ) β π Fn πΌ) |
27 | | simpr 485 |
. . . . . 6
β’ (((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β§ π¦ β πΌ) β π¦ β πΌ) |
28 | | fvco2 6985 |
. . . . . 6
β’ ((π Fn πΌ β§ π¦ β πΌ) β (((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β π)βπ¦) = ((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄)))β(πβπ¦))) |
29 | 26, 27, 28 | syl2anc 584 |
. . . . 5
β’ (((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β§ π¦ β πΌ) β (((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β π)βπ¦) = ((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄)))β(πβπ¦))) |
30 | | simpl1 1191 |
. . . . . 6
β’ (((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β§ π¦ β πΌ) β π β LMod) |
31 | | simpl2 1192 |
. . . . . 6
β’ (((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β§ π¦ β πΌ) β πΌ β π) |
32 | 8 | a1i 11 |
. . . . . 6
β’ (((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β§ π¦ β πΌ) β π
= (Scalarβπ)) |
33 | | simpl3 1193 |
. . . . . 6
β’ (((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β§ π¦ β πΌ) β π΄:πΌβΆπΆ) |
34 | 1, 2, 3, 4, 5, 30,
31, 32, 33, 27, 16 | frlmup2 21345 |
. . . . 5
β’ (((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β§ π¦ β πΌ) β ((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄)))β(πβπ¦)) = (π΄βπ¦)) |
35 | 29, 34 | eqtrd 2772 |
. . . 4
β’ (((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β§ π¦ β πΌ) β (((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β π)βπ¦) = (π΄βπ¦)) |
36 | 22, 24, 35 | eqfnfvd 7032 |
. . 3
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β ((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β π) = π΄) |
37 | | coeq1 5855 |
. . . . 5
β’ (π = (π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β (π β π) = ((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β π)) |
38 | 37 | eqeq1d 2734 |
. . . 4
β’ (π = (π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β ((π β π) = π΄ β ((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β π) = π΄)) |
39 | 38 | rspcev 3612 |
. . 3
β’ (((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β (πΉ LMHom π) β§ ((π₯ β (BaseβπΉ) β¦ (π Ξ£g (π₯ βf (
Β·π βπ)π΄))) β π) = π΄) β βπ β (πΉ LMHom π)(π β π) = π΄) |
40 | 11, 36, 39 | syl2anc 584 |
. 2
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β βπ β (πΉ LMHom π)(π β π) = π΄) |
41 | 18 | ffund 6718 |
. . . 4
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β Fun π) |
42 | | funcoeqres 6861 |
. . . . . 6
β’ ((Fun
π β§ (π β π) = π΄) β (π βΎ ran π) = (π΄ β β‘π)) |
43 | 42 | ex 413 |
. . . . 5
β’ (Fun
π β ((π β π) = π΄ β (π βΎ ran π) = (π΄ β β‘π))) |
44 | 43 | ralrimivw 3150 |
. . . 4
β’ (Fun
π β βπ β (πΉ LMHom π)((π β π) = π΄ β (π βΎ ran π) = (π΄ β β‘π))) |
45 | 41, 44 | syl 17 |
. . 3
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β βπ β (πΉ LMHom π)((π β π) = π΄ β (π βΎ ran π) = (π΄ β β‘π))) |
46 | | eqid 2732 |
. . . . . . 7
β’
(LBasisβπΉ) =
(LBasisβπΉ) |
47 | 1, 16, 46 | frlmlbs 21343 |
. . . . . 6
β’ ((π
β Ring β§ πΌ β π) β ran π β (LBasisβπΉ)) |
48 | 15, 7, 47 | syl2anc 584 |
. . . . 5
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β ran π β (LBasisβπΉ)) |
49 | | eqid 2732 |
. . . . . 6
β’
(LSpanβπΉ) =
(LSpanβπΉ) |
50 | 2, 46, 49 | lbssp 20682 |
. . . . 5
β’ (ran
π β
(LBasisβπΉ) β
((LSpanβπΉ)βran
π) = (BaseβπΉ)) |
51 | 48, 50 | syl 17 |
. . . 4
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β ((LSpanβπΉ)βran π) = (BaseβπΉ)) |
52 | 2, 49 | lspextmo 20659 |
. . . 4
β’ ((ran
π β (BaseβπΉ) β§ ((LSpanβπΉ)βran π) = (BaseβπΉ)) β β*π β (πΉ LMHom π)(π βΎ ran π) = (π΄ β β‘π)) |
53 | 20, 51, 52 | syl2anc 584 |
. . 3
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β β*π β (πΉ LMHom π)(π βΎ ran π) = (π΄ β β‘π)) |
54 | | rmoim 3735 |
. . 3
β’
(βπ β
(πΉ LMHom π)((π β π) = π΄ β (π βΎ ran π) = (π΄ β β‘π)) β (β*π β (πΉ LMHom π)(π βΎ ran π) = (π΄ β β‘π) β β*π β (πΉ LMHom π)(π β π) = π΄)) |
55 | 45, 53, 54 | sylc 65 |
. 2
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β β*π β (πΉ LMHom π)(π β π) = π΄) |
56 | | reu5 3378 |
. 2
β’
(β!π β
(πΉ LMHom π)(π β π) = π΄ β (βπ β (πΉ LMHom π)(π β π) = π΄ β§ β*π β (πΉ LMHom π)(π β π) = π΄)) |
57 | 40, 55, 56 | sylanbrc 583 |
1
β’ ((π β LMod β§ πΌ β π β§ π΄:πΌβΆπΆ) β β!π β (πΉ LMHom π)(π β π) = π΄) |