Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmup4 Structured version   Visualization version   GIF version

Theorem frlmup4 20506
 Description: Universal property of the free module by existential uniqueness. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Hypotheses
Ref Expression
frlmup4.r 𝑅 = (Scalar‘𝑇)
frlmup4.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmup4.u 𝑈 = (𝑅 unitVec 𝐼)
frlmup4.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
frlmup4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ∃!𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚𝑈) = 𝐴)
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝑇,𝑚   𝑈,𝑚
Allowed substitution hints:   𝐶(𝑚)   𝑅(𝑚)   𝐼(𝑚)   𝑋(𝑚)

Proof of Theorem frlmup4
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmup4.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
2 eqid 2824 . . . 4 (Base‘𝐹) = (Base‘𝐹)
3 frlmup4.c . . . 4 𝐶 = (Base‘𝑇)
4 eqid 2824 . . . 4 ( ·𝑠𝑇) = ( ·𝑠𝑇)
5 eqid 2824 . . . 4 (𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) = (𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴)))
6 simp1 1172 . . . 4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → 𝑇 ∈ LMod)
7 simp2 1173 . . . 4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → 𝐼𝑋)
8 frlmup4.r . . . . 5 𝑅 = (Scalar‘𝑇)
98a1i 11 . . . 4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → 𝑅 = (Scalar‘𝑇))
10 simp3 1174 . . . 4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → 𝐴:𝐼𝐶)
111, 2, 3, 4, 5, 6, 7, 9, 10frlmup1 20503 . . 3 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → (𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∈ (𝐹 LMHom 𝑇))
12 ovex 6936 . . . . . . 7 (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴)) ∈ V
1312, 5fnmpti 6254 . . . . . 6 (𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) Fn (Base‘𝐹)
1413a1i 11 . . . . 5 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → (𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) Fn (Base‘𝐹))
158lmodring 19226 . . . . . . . 8 (𝑇 ∈ LMod → 𝑅 ∈ Ring)
16153ad2ant1 1169 . . . . . . 7 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → 𝑅 ∈ Ring)
17 frlmup4.u . . . . . . . 8 𝑈 = (𝑅 unitVec 𝐼)
1817, 1, 2uvcff 20496 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → 𝑈:𝐼⟶(Base‘𝐹))
1916, 7, 18syl2anc 581 . . . . . 6 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → 𝑈:𝐼⟶(Base‘𝐹))
2019ffnd 6278 . . . . 5 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → 𝑈 Fn 𝐼)
2119frnd 6284 . . . . 5 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ran 𝑈 ⊆ (Base‘𝐹))
22 fnco 6231 . . . . 5 (((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) Fn (Base‘𝐹) ∧ 𝑈 Fn 𝐼 ∧ ran 𝑈 ⊆ (Base‘𝐹)) → ((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∘ 𝑈) Fn 𝐼)
2314, 20, 21, 22syl3anc 1496 . . . 4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∘ 𝑈) Fn 𝐼)
24 ffn 6277 . . . . 5 (𝐴:𝐼𝐶𝐴 Fn 𝐼)
25243ad2ant3 1171 . . . 4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → 𝐴 Fn 𝐼)
2619adantr 474 . . . . . . 7 (((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) ∧ 𝑦𝐼) → 𝑈:𝐼⟶(Base‘𝐹))
2726ffnd 6278 . . . . . 6 (((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) ∧ 𝑦𝐼) → 𝑈 Fn 𝐼)
28 simpr 479 . . . . . 6 (((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) ∧ 𝑦𝐼) → 𝑦𝐼)
29 fvco2 6519 . . . . . 6 ((𝑈 Fn 𝐼𝑦𝐼) → (((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∘ 𝑈)‘𝑦) = ((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴)))‘(𝑈𝑦)))
3027, 28, 29syl2anc 581 . . . . 5 (((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) ∧ 𝑦𝐼) → (((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∘ 𝑈)‘𝑦) = ((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴)))‘(𝑈𝑦)))
31 simpl1 1248 . . . . . 6 (((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) ∧ 𝑦𝐼) → 𝑇 ∈ LMod)
32 simpl2 1250 . . . . . 6 (((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) ∧ 𝑦𝐼) → 𝐼𝑋)
338a1i 11 . . . . . 6 (((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) ∧ 𝑦𝐼) → 𝑅 = (Scalar‘𝑇))
34 simpl3 1252 . . . . . 6 (((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) ∧ 𝑦𝐼) → 𝐴:𝐼𝐶)
351, 2, 3, 4, 5, 31, 32, 33, 34, 28, 17frlmup2 20504 . . . . 5 (((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) ∧ 𝑦𝐼) → ((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴)))‘(𝑈𝑦)) = (𝐴𝑦))
3630, 35eqtrd 2860 . . . 4 (((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) ∧ 𝑦𝐼) → (((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∘ 𝑈)‘𝑦) = (𝐴𝑦))
3723, 25, 36eqfnfvd 6562 . . 3 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∘ 𝑈) = 𝐴)
38 coeq1 5511 . . . . 5 (𝑚 = (𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) → (𝑚𝑈) = ((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∘ 𝑈))
3938eqeq1d 2826 . . . 4 (𝑚 = (𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) → ((𝑚𝑈) = 𝐴 ↔ ((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∘ 𝑈) = 𝐴))
4039rspcev 3525 . . 3 (((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∈ (𝐹 LMHom 𝑇) ∧ ((𝑥 ∈ (Base‘𝐹) ↦ (𝑇 Σg (𝑥𝑓 ( ·𝑠𝑇)𝐴))) ∘ 𝑈) = 𝐴) → ∃𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚𝑈) = 𝐴)
4111, 37, 40syl2anc 581 . 2 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ∃𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚𝑈) = 𝐴)
4219ffund 6281 . . . 4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → Fun 𝑈)
43 funcoeqres 6407 . . . . . 6 ((Fun 𝑈 ∧ (𝑚𝑈) = 𝐴) → (𝑚 ↾ ran 𝑈) = (𝐴𝑈))
4443ex 403 . . . . 5 (Fun 𝑈 → ((𝑚𝑈) = 𝐴 → (𝑚 ↾ ran 𝑈) = (𝐴𝑈)))
4544ralrimivw 3175 . . . 4 (Fun 𝑈 → ∀𝑚 ∈ (𝐹 LMHom 𝑇)((𝑚𝑈) = 𝐴 → (𝑚 ↾ ran 𝑈) = (𝐴𝑈)))
4642, 45syl 17 . . 3 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ∀𝑚 ∈ (𝐹 LMHom 𝑇)((𝑚𝑈) = 𝐴 → (𝑚 ↾ ran 𝑈) = (𝐴𝑈)))
47 eqid 2824 . . . . . . 7 (LBasis‘𝐹) = (LBasis‘𝐹)
481, 17, 47frlmlbs 20502 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑋) → ran 𝑈 ∈ (LBasis‘𝐹))
4916, 7, 48syl2anc 581 . . . . 5 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ran 𝑈 ∈ (LBasis‘𝐹))
50 eqid 2824 . . . . . 6 (LSpan‘𝐹) = (LSpan‘𝐹)
512, 47, 50lbssp 19437 . . . . 5 (ran 𝑈 ∈ (LBasis‘𝐹) → ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹))
5249, 51syl 17 . . . 4 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹))
532, 50lspextmo 19414 . . . 4 ((ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹)) → ∃*𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚 ↾ ran 𝑈) = (𝐴𝑈))
5421, 52, 53syl2anc 581 . . 3 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ∃*𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚 ↾ ran 𝑈) = (𝐴𝑈))
55 rmoim 3633 . . 3 (∀𝑚 ∈ (𝐹 LMHom 𝑇)((𝑚𝑈) = 𝐴 → (𝑚 ↾ ran 𝑈) = (𝐴𝑈)) → (∃*𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚 ↾ ran 𝑈) = (𝐴𝑈) → ∃*𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚𝑈) = 𝐴))
5646, 54, 55sylc 65 . 2 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ∃*𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚𝑈) = 𝐴)
57 reu5 3370 . 2 (∃!𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚𝑈) = 𝐴 ↔ (∃𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚𝑈) = 𝐴 ∧ ∃*𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚𝑈) = 𝐴))
5841, 56, 57sylanbrc 580 1 ((𝑇 ∈ LMod ∧ 𝐼𝑋𝐴:𝐼𝐶) → ∃!𝑚 ∈ (𝐹 LMHom 𝑇)(𝑚𝑈) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166  ∀wral 3116  ∃wrex 3117  ∃!wreu 3118  ∃*wrmo 3119   ⊆ wss 3797   ↦ cmpt 4951  ◡ccnv 5340  ran crn 5342   ↾ cres 5343   ∘ ccom 5345  Fun wfun 6116   Fn wfn 6117  ⟶wf 6118  ‘cfv 6122  (class class class)co 6904   ∘𝑓 cof 7154  Basecbs 16221  Scalarcsca 16307   ·𝑠 cvsca 16308   Σg cgsu 16453  Ringcrg 18900  LModclmod 19218  LSpanclspn 19329   LMHom clmhm 19377  LBasisclbs 19432   freeLMod cfrlm 20452   unitVec cuvc 20487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-inf2 8814  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-iin 4742  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-se 5301  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-isom 6131  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-of 7156  df-om 7326  df-1st 7427  df-2nd 7428  df-supp 7559  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-map 8123  df-ixp 8175  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-fsupp 8544  df-sup 8616  df-oi 8683  df-card 9077  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-5 11416  df-6 11417  df-7 11418  df-8 11419  df-9 11420  df-n0 11618  df-z 11704  df-dec 11821  df-uz 11968  df-fz 12619  df-fzo 12760  df-seq 13095  df-hash 13410  df-struct 16223  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-ress 16229  df-plusg 16317  df-mulr 16318  df-sca 16320  df-vsca 16321  df-ip 16322  df-tset 16323  df-ple 16324  df-ds 16326  df-hom 16328  df-cco 16329  df-0g 16454  df-gsum 16455  df-prds 16460  df-pws 16462  df-mre 16598  df-mrc 16599  df-acs 16601  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-mhm 17687  df-submnd 17688  df-grp 17778  df-minusg 17779  df-sbg 17780  df-mulg 17894  df-subg 17941  df-ghm 18008  df-cntz 18099  df-cmn 18547  df-abl 18548  df-mgp 18843  df-ur 18855  df-ring 18902  df-subrg 19133  df-lmod 19220  df-lss 19288  df-lsp 19330  df-lmhm 19380  df-lbs 19433  df-sra 19532  df-rgmod 19533  df-nzr 19618  df-dsmm 20438  df-frlm 20453  df-uvc 20488 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator