MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreulem1 Structured version   Visualization version   GIF version

Theorem 2sqreulem1 26182
Description: Lemma 1 for 2sqreu 26192. (Contributed by AV, 4-Jun-2023.)
Assertion
Ref Expression
2sqreulem1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreulem1
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqnn0 26174 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)))
2 simpll 767 . . . . . . . . 9 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑥 ∈ ℕ0)
32adantl 485 . . . . . . . 8 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℕ0)
4 breq1 5033 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎𝑏𝑥𝑏))
5 oveq1 7177 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑎↑2) = (𝑥↑2))
65oveq1d 7185 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ((𝑎↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑏↑2)))
76eqeq1d 2740 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = 𝑃))
84, 7anbi12d 634 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
98reubidv 3292 . . . . . . . . 9 (𝑎 = 𝑥 → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
109adantl 485 . . . . . . . 8 (((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑥) → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
11 simpr 488 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 𝑦 ∈ ℕ0)
1211adantr 484 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → 𝑦 ∈ ℕ0)
13 breq2 5034 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (𝑥𝑏𝑥𝑦))
14 oveq1 7177 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑦 → (𝑏↑2) = (𝑦↑2))
1514oveq2d 7186 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑦 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))
1615eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))))
1713, 16anbi12d 634 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2)))))
18 equequ1 2037 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑦 → (𝑏 = 𝑐𝑦 = 𝑐))
1918imbi2d 344 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
2019ralbidv 3109 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → (∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
2117, 20anbi12d 634 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))))
2221adantl 485 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑏 = 𝑦) → (((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))))
23 simpr 488 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → 𝑥𝑦)
24 eqidd 2739 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2)))
25 nn0re 11985 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℕ0𝑐 ∈ ℝ)
2625resqcld 13703 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ℕ0 → (𝑐↑2) ∈ ℝ)
2726adantl 485 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → (𝑐↑2) ∈ ℝ)
28 nn0re 11985 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
2928resqcld 13703 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ0 → (𝑦↑2) ∈ ℝ)
3029adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦↑2) ∈ ℝ)
3130ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → (𝑦↑2) ∈ ℝ)
32 nn0re 11985 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
3332resqcld 13703 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℕ0 → (𝑥↑2) ∈ ℝ)
3433adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥↑2) ∈ ℝ)
3534ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → (𝑥↑2) ∈ ℝ)
36 readdcan 10892 . . . . . . . . . . . . . . . . . . 19 (((𝑐↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2)))
3727, 31, 35, 36syl3anc 1372 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2)))
3828ad4antlr 733 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 ∈ ℝ)
3925ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑐 ∈ ℝ)
40 nn0ge0 12001 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
4140ad4antlr 733 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑦)
42 nn0ge0 12001 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℕ0 → 0 ≤ 𝑐)
4342ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑐)
44 simpr 488 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑐↑2) = (𝑦↑2))
4544eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑦↑2) = (𝑐↑2))
4638, 39, 41, 43, 45sq11d 13713 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 = 𝑐)
4746ex 416 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → ((𝑐↑2) = (𝑦↑2) → 𝑦 = 𝑐))
4837, 47sylbid 243 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑦 = 𝑐))
4948adantld 494 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ0) → ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))
5049ralrimiva 3096 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))
5123, 24, 50jca31 518 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
5212, 22, 51rspcedvd 3529 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → ∃𝑏 ∈ ℕ0 ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
53 breq2 5034 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (𝑥𝑏𝑥𝑐))
54 oveq1 7177 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑐 → (𝑏↑2) = (𝑐↑2))
5554oveq2d 7186 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑐↑2)))
5655eqeq1d 2740 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))
5753, 56anbi12d 634 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))))
5857reu8 3632 . . . . . . . . . . . . 13 (∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ0 ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
5952, 58sylibr 237 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑥𝑦) → ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
6059ex 416 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥𝑦 → ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6160adantr 484 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑥𝑦 → ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6261impcom 411 . . . . . . . . 9 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
63 eqeq2 2750 . . . . . . . . . . . . 13 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑥↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
6463anbi2d 632 . . . . . . . . . . . 12 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6564reubidv 3292 . . . . . . . . . . 11 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6665adantl 485 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6766adantl 485 . . . . . . . . 9 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6862, 67mpbird 260 . . . . . . . 8 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ0 (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃))
693, 10, 68rspcedvd 3529 . . . . . . 7 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
7011adantr 484 . . . . . . . . 9 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑦 ∈ ℕ0)
7170adantl 485 . . . . . . . 8 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℕ0)
72 breq1 5033 . . . . . . . . . . 11 (𝑎 = 𝑦 → (𝑎𝑏𝑦𝑏))
73 oveq1 7177 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → (𝑎↑2) = (𝑦↑2))
7473oveq1d 7185 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝑎↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑏↑2)))
7574eqeq1d 2740 . . . . . . . . . . 11 (𝑎 = 𝑦 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = 𝑃))
7672, 75anbi12d 634 . . . . . . . . . 10 (𝑎 = 𝑦 → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
7776reubidv 3292 . . . . . . . . 9 (𝑎 = 𝑦 → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
7877adantl 485 . . . . . . . 8 (((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑦) → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
79 simpll 767 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → 𝑥 ∈ ℕ0)
80 breq2 5034 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (𝑦𝑏𝑦𝑥))
81 oveq1 7177 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑥 → (𝑏↑2) = (𝑥↑2))
8281oveq2d 7186 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑥↑2)))
8382eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))))
8480, 83anbi12d 634 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑥 → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))))
85 equequ1 2037 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → (𝑏 = 𝑐𝑥 = 𝑐))
8685imbi2d 344 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
8786ralbidv 3109 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑥 → (∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
8884, 87anbi12d 634 . . . . . . . . . . . . . . 15 (𝑏 = 𝑥 → (((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))))
8988adantl 485 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) ∧ 𝑏 = 𝑥) → (((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))))
90 ltnle 10798 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
9128, 32, 90syl2anr 600 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
9228ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 < 𝑥) → 𝑦 ∈ ℝ)
9332ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 < 𝑥) → 𝑥 ∈ ℝ)
94 simpr 488 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
9592, 93, 94ltled 10866 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑦 < 𝑥) → 𝑦𝑥)
9695ex 416 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦 < 𝑥𝑦𝑥))
9791, 96sylbird 263 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (¬ 𝑥𝑦𝑦𝑥))
9897imp 410 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → 𝑦𝑥)
9929recnd 10747 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → (𝑦↑2) ∈ ℂ)
10099adantl 485 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦↑2) ∈ ℂ)
10133recnd 10747 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ0 → (𝑥↑2) ∈ ℂ)
102101adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥↑2) ∈ ℂ)
103100, 102addcomd 10920 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))
104103adantr 484 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))
10534recnd 10747 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥↑2) ∈ ℂ)
106105adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (𝑥↑2) ∈ ℂ)
10730recnd 10747 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦↑2) ∈ ℂ)
108107adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (𝑦↑2) ∈ ℂ)
109106, 108addcomd 10920 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((𝑥↑2) + (𝑦↑2)) = ((𝑦↑2) + (𝑥↑2)))
110109eqeq2d 2749 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2))))
11126adantl 485 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (𝑐↑2) ∈ ℝ)
11233ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (𝑥↑2) ∈ ℝ)
11329ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (𝑦↑2) ∈ ℝ)
114 readdcan 10892 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
115111, 112, 113, 114syl3anc 1372 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
116110, 115bitrd 282 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
11725ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 ∈ ℝ)
11832adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 𝑥 ∈ ℝ)
119118ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 ∈ ℝ)
12042ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑐)
121 nn0ge0 12001 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℕ0 → 0 ≤ 𝑥)
122121adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → 0 ≤ 𝑥)
123122ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑥)
124 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → (𝑐↑2) = (𝑥↑2))
125117, 119, 120, 123, 124sq11d 13713 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 = 𝑥)
126125eqcomd 2744 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 = 𝑐)
127126ex 416 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((𝑐↑2) = (𝑥↑2) → 𝑥 = 𝑐))
128116, 127sylbid 243 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑥 = 𝑐))
129128adantld 494 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑐 ∈ ℕ0) → ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
130129ralrimiva 3096 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
131130adantr 484 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
13298, 104, 131jca31 518 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
13379, 89, 132rspcedvd 3529 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → ∃𝑏 ∈ ℕ0 ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
134 breq2 5034 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (𝑦𝑏𝑦𝑐))
13554oveq2d 7186 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑐↑2)))
136135eqeq1d 2740 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))
137134, 136anbi12d 634 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))))
138137reu8 3632 . . . . . . . . . . . . 13 (∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ0 ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ0 ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
139133, 138sylibr 237 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ¬ 𝑥𝑦) → ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
140139ex 416 . . . . . . . . . . 11 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (¬ 𝑥𝑦 → ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
141140adantr 484 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (¬ 𝑥𝑦 → ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
142141impcom 411 . . . . . . . . 9 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
143 eqeq2 2750 . . . . . . . . . . . . 13 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑦↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
144143anbi2d 632 . . . . . . . . . . . 12 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
145144reubidv 3292 . . . . . . . . . . 11 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
146145adantl 485 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
147146adantl 485 . . . . . . . . 9 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
148142, 147mpbird 260 . . . . . . . 8 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ0 (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃))
14971, 78, 148rspcedvd 3529 . . . . . . 7 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
15069, 149pm2.61ian 812 . . . . . 6 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
151150ex 416 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
152151adantl 485 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
153152rexlimdvva 3204 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃𝑥 ∈ ℕ0𝑦 ∈ ℕ0 𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
1541, 153mpd 15 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
155 reurex 3329 . . . . 5 (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
156155a1i 11 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ0) → (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
157156ralrimiva 3096 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∀𝑎 ∈ ℕ0 (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
158 2sqmo 26173 . . . 4 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
159158adantr 484 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
160 rmoim 3639 . . 3 (∀𝑎 ∈ ℕ0 (∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
161157, 159, 160sylc 65 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃*𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
162 reu5 3328 . 2 (∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃*𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
163154, 161, 162sylanbrc 586 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ0 ∃!𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3053  wrex 3054  ∃!wreu 3055  ∃*wrmo 3056   class class class wbr 5030  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615  1c1 10616   + caddc 10618   < clt 10753  cle 10754  2c2 11771  4c4 11773  0cn0 11976   mod cmo 13328  cexp 13521  cprime 16112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-ofr 7426  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-tpos 7921  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-oadd 8135  df-er 8320  df-ec 8322  df-qs 8326  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-sup 8979  df-inf 8980  df-oi 9047  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-xnn0 12049  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-dvds 15700  df-gcd 15938  df-prm 16113  df-phi 16203  df-pc 16274  df-gz 16366  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-0g 16818  df-gsum 16819  df-prds 16824  df-pws 16826  df-imas 16884  df-qus 16885  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-mhm 18072  df-submnd 18073  df-grp 18222  df-minusg 18223  df-sbg 18224  df-mulg 18343  df-subg 18394  df-nsg 18395  df-eqg 18396  df-ghm 18474  df-cntz 18565  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-srg 19375  df-ring 19418  df-cring 19419  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-dvr 19555  df-rnghom 19589  df-drng 19623  df-field 19624  df-subrg 19652  df-lmod 19755  df-lss 19823  df-lsp 19863  df-sra 20063  df-rgmod 20064  df-lidl 20065  df-rsp 20066  df-2idl 20124  df-nzr 20150  df-rlreg 20175  df-domn 20176  df-idom 20177  df-cnfld 20218  df-zring 20290  df-zrh 20324  df-zn 20327  df-assa 20669  df-asp 20670  df-ascl 20671  df-psr 20722  df-mvr 20723  df-mpl 20724  df-opsr 20726  df-evls 20886  df-evl 20887  df-psr1 20955  df-vr1 20956  df-ply1 20957  df-coe1 20958  df-evl1 21086  df-mdeg 24805  df-deg1 24806  df-mon1 24883  df-uc1p 24884  df-q1p 24885  df-r1p 24886  df-lgs 26031
This theorem is referenced by:  2sqreultlem  26183  2sqreu  26192
  Copyright terms: Public domain W3C validator