MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlseu Structured version   Visualization version   GIF version

Theorem evlseu 21637
Description: For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlseu.p 𝑃 = (𝐼 mPoly 𝑅)
evlseu.c 𝐢 = (Baseβ€˜π‘†)
evlseu.a 𝐴 = (algScβ€˜π‘ƒ)
evlseu.v 𝑉 = (𝐼 mVar 𝑅)
evlseu.i (πœ‘ β†’ 𝐼 ∈ π‘Š)
evlseu.r (πœ‘ β†’ 𝑅 ∈ CRing)
evlseu.s (πœ‘ β†’ 𝑆 ∈ CRing)
evlseu.f (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
evlseu.g (πœ‘ β†’ 𝐺:𝐼⟢𝐢)
Assertion
Ref Expression
evlseu (πœ‘ β†’ βˆƒ!π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
Distinct variable groups:   𝐴,π‘š   π‘š,𝐹   π‘š,𝐺   π‘š,𝐼   𝑃,π‘š   πœ‘,π‘š   𝑆,π‘š   π‘š,𝑉
Allowed substitution hints:   𝐢(π‘š)   𝑅(π‘š)   π‘Š(π‘š)

Proof of Theorem evlseu
Dummy variables 𝑛 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlseu.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2732 . . . 4 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
3 evlseu.c . . . 4 𝐢 = (Baseβ€˜π‘†)
4 eqid 2732 . . . 4 {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} = {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin}
5 eqid 2732 . . . 4 (mulGrpβ€˜π‘†) = (mulGrpβ€˜π‘†)
6 eqid 2732 . . . 4 (.gβ€˜(mulGrpβ€˜π‘†)) = (.gβ€˜(mulGrpβ€˜π‘†))
7 eqid 2732 . . . 4 (.rβ€˜π‘†) = (.rβ€˜π‘†)
8 evlseu.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
9 eqid 2732 . . . 4 (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺))))))
10 evlseu.i . . . 4 (πœ‘ β†’ 𝐼 ∈ π‘Š)
11 evlseu.r . . . 4 (πœ‘ β†’ 𝑅 ∈ CRing)
12 evlseu.s . . . 4 (πœ‘ β†’ 𝑆 ∈ CRing)
13 evlseu.f . . . 4 (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
14 evlseu.g . . . 4 (πœ‘ β†’ 𝐺:𝐼⟢𝐢)
15 evlseu.a . . . 4 𝐴 = (algScβ€˜π‘ƒ)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15evlslem1 21636 . . 3 (πœ‘ β†’ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉) = 𝐺))
17 coeq1 5855 . . . . . . 7 (π‘š = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) β†’ (π‘š ∘ 𝐴) = ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴))
1817eqeq1d 2734 . . . . . 6 (π‘š = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) β†’ ((π‘š ∘ 𝐴) = 𝐹 ↔ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴) = 𝐹))
19 coeq1 5855 . . . . . . 7 (π‘š = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) β†’ (π‘š ∘ 𝑉) = ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉))
2019eqeq1d 2734 . . . . . 6 (π‘š = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) β†’ ((π‘š ∘ 𝑉) = 𝐺 ↔ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉) = 𝐺))
2118, 20anbi12d 631 . . . . 5 (π‘š = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) β†’ (((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) ↔ (((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉) = 𝐺)))
2221rspcev 3612 . . . 4 (((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ (((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉) = 𝐺)) β†’ βˆƒπ‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
23223impb 1115 . . 3 (((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉) = 𝐺) β†’ βˆƒπ‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
2416, 23syl 17 . 2 (πœ‘ β†’ βˆƒπ‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
25 eqid 2732 . . . . . . . . . 10 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
26 crngring 20061 . . . . . . . . . . 11 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
2711, 26syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝑅 ∈ Ring)
281, 2, 25, 15, 10, 27mplasclf 21617 . . . . . . . . 9 (πœ‘ β†’ 𝐴:(Baseβ€˜π‘…)⟢(Baseβ€˜π‘ƒ))
2928ffund 6718 . . . . . . . 8 (πœ‘ β†’ Fun 𝐴)
30 funcoeqres 6861 . . . . . . . 8 ((Fun 𝐴 ∧ (π‘š ∘ 𝐴) = 𝐹) β†’ (π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴))
3129, 30sylan 580 . . . . . . 7 ((πœ‘ ∧ (π‘š ∘ 𝐴) = 𝐹) β†’ (π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴))
321, 8, 2, 10, 27mvrf2 21543 . . . . . . . . 9 (πœ‘ β†’ 𝑉:𝐼⟢(Baseβ€˜π‘ƒ))
3332ffund 6718 . . . . . . . 8 (πœ‘ β†’ Fun 𝑉)
34 funcoeqres 6861 . . . . . . . 8 ((Fun 𝑉 ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉))
3533, 34sylan 580 . . . . . . 7 ((πœ‘ ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉))
3631, 35anim12dan 619 . . . . . 6 ((πœ‘ ∧ ((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺)) β†’ ((π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴) ∧ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉)))
3736ex 413 . . . . 5 (πœ‘ β†’ (((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ ((π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴) ∧ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉))))
38 resundi 5993 . . . . . 6 (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((π‘š β†Ύ ran 𝐴) βˆͺ (π‘š β†Ύ ran 𝑉))
39 uneq12 4157 . . . . . 6 (((π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴) ∧ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉)) β†’ ((π‘š β†Ύ ran 𝐴) βˆͺ (π‘š β†Ύ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)))
4038, 39eqtrid 2784 . . . . 5 (((π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴) ∧ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉)) β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)))
4137, 40syl6 35 . . . 4 (πœ‘ β†’ (((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))))
4241ralrimivw 3150 . . 3 (πœ‘ β†’ βˆ€π‘š ∈ (𝑃 RingHom 𝑆)(((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))))
43 eqtr3 2758 . . . . . 6 (((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ∧ (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))) β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)))
44 eqid 2732 . . . . . . . . . . . . 13 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4544, 10, 11psrassa 21525 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐼 mPwSer 𝑅) ∈ AssAlg)
46 eqid 2732 . . . . . . . . . . . . . 14 (Baseβ€˜(𝐼 mPwSer 𝑅)) = (Baseβ€˜(𝐼 mPwSer 𝑅))
4744, 8, 46, 10, 27mvrf 21535 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑉:𝐼⟢(Baseβ€˜(𝐼 mPwSer 𝑅)))
4847frnd 6722 . . . . . . . . . . . 12 (πœ‘ β†’ ran 𝑉 βŠ† (Baseβ€˜(𝐼 mPwSer 𝑅)))
49 eqid 2732 . . . . . . . . . . . . 13 (AlgSpanβ€˜(𝐼 mPwSer 𝑅)) = (AlgSpanβ€˜(𝐼 mPwSer 𝑅))
50 eqid 2732 . . . . . . . . . . . . 13 (algScβ€˜(𝐼 mPwSer 𝑅)) = (algScβ€˜(𝐼 mPwSer 𝑅))
51 eqid 2732 . . . . . . . . . . . . 13 (mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅))) = (mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))
5249, 50, 51, 46aspval2 21443 . . . . . . . . . . . 12 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ ran 𝑉 βŠ† (Baseβ€˜(𝐼 mPwSer 𝑅))) β†’ ((AlgSpanβ€˜(𝐼 mPwSer 𝑅))β€˜ran 𝑉) = ((mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)))
5345, 48, 52syl2anc 584 . . . . . . . . . . 11 (πœ‘ β†’ ((AlgSpanβ€˜(𝐼 mPwSer 𝑅))β€˜ran 𝑉) = ((mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)))
541, 44, 8, 49, 10, 11mplbas2 21588 . . . . . . . . . . 11 (πœ‘ β†’ ((AlgSpanβ€˜(𝐼 mPwSer 𝑅))β€˜ran 𝑉) = (Baseβ€˜π‘ƒ))
5544, 1, 2, 10, 27mplsubrg 21555 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (Baseβ€˜π‘ƒ) ∈ (SubRingβ€˜(𝐼 mPwSer 𝑅)))
561, 44, 2mplval2 21546 . . . . . . . . . . . . . . . 16 𝑃 = ((𝐼 mPwSer 𝑅) β†Ύs (Baseβ€˜π‘ƒ))
5756subsubrg2 20383 . . . . . . . . . . . . . . 15 ((Baseβ€˜π‘ƒ) ∈ (SubRingβ€˜(𝐼 mPwSer 𝑅)) β†’ (SubRingβ€˜π‘ƒ) = ((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))
5855, 57syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ (SubRingβ€˜π‘ƒ) = ((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))
5958fveq2d 6892 . . . . . . . . . . . . 13 (πœ‘ β†’ (mrClsβ€˜(SubRingβ€˜π‘ƒ)) = (mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ))))
6050, 56ressascl 21441 . . . . . . . . . . . . . . . . 17 ((Baseβ€˜π‘ƒ) ∈ (SubRingβ€˜(𝐼 mPwSer 𝑅)) β†’ (algScβ€˜(𝐼 mPwSer 𝑅)) = (algScβ€˜π‘ƒ))
6155, 60syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (algScβ€˜(𝐼 mPwSer 𝑅)) = (algScβ€˜π‘ƒ))
6215, 61eqtr4id 2791 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐴 = (algScβ€˜(𝐼 mPwSer 𝑅)))
6362rneqd 5935 . . . . . . . . . . . . . 14 (πœ‘ β†’ ran 𝐴 = ran (algScβ€˜(𝐼 mPwSer 𝑅)))
6463uneq1d 4161 . . . . . . . . . . . . 13 (πœ‘ β†’ (ran 𝐴 βˆͺ ran 𝑉) = (ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉))
6559, 64fveq12d 6895 . . . . . . . . . . . 12 (πœ‘ β†’ ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)) = ((mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)))
66 assaring 21407 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ AssAlg β†’ (𝐼 mPwSer 𝑅) ∈ Ring)
6746subrgmre 20380 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ Ring β†’ (SubRingβ€˜(𝐼 mPwSer 𝑅)) ∈ (Mooreβ€˜(Baseβ€˜(𝐼 mPwSer 𝑅))))
6845, 66, 673syl 18 . . . . . . . . . . . . 13 (πœ‘ β†’ (SubRingβ€˜(𝐼 mPwSer 𝑅)) ∈ (Mooreβ€˜(Baseβ€˜(𝐼 mPwSer 𝑅))))
6928frnd 6722 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ran 𝐴 βŠ† (Baseβ€˜π‘ƒ))
7063, 69eqsstrrd 4020 . . . . . . . . . . . . . 14 (πœ‘ β†’ ran (algScβ€˜(𝐼 mPwSer 𝑅)) βŠ† (Baseβ€˜π‘ƒ))
7132frnd 6722 . . . . . . . . . . . . . 14 (πœ‘ β†’ ran 𝑉 βŠ† (Baseβ€˜π‘ƒ))
7270, 71unssd 4185 . . . . . . . . . . . . 13 (πœ‘ β†’ (ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉) βŠ† (Baseβ€˜π‘ƒ))
73 eqid 2732 . . . . . . . . . . . . . 14 (mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ))) = (mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))
7451, 73submrc 17568 . . . . . . . . . . . . 13 (((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∈ (Mooreβ€˜(Baseβ€˜(𝐼 mPwSer 𝑅))) ∧ (Baseβ€˜π‘ƒ) ∈ (SubRingβ€˜(𝐼 mPwSer 𝑅)) ∧ (ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉) βŠ† (Baseβ€˜π‘ƒ)) β†’ ((mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)) = ((mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)))
7568, 55, 72, 74syl3anc 1371 . . . . . . . . . . . 12 (πœ‘ β†’ ((mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)) = ((mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)))
7665, 75eqtr2d 2773 . . . . . . . . . . 11 (πœ‘ β†’ ((mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)) = ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)))
7753, 54, 763eqtr3d 2780 . . . . . . . . . 10 (πœ‘ β†’ (Baseβ€˜π‘ƒ) = ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)))
7877ad2antrr 724 . . . . . . . . 9 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ (Baseβ€˜π‘ƒ) = ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)))
791mplring 21569 . . . . . . . . . . . . 13 ((𝐼 ∈ π‘Š ∧ 𝑅 ∈ Ring) β†’ 𝑃 ∈ Ring)
8010, 27, 79syl2anc 584 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑃 ∈ Ring)
812subrgmre 20380 . . . . . . . . . . . 12 (𝑃 ∈ Ring β†’ (SubRingβ€˜π‘ƒ) ∈ (Mooreβ€˜(Baseβ€˜π‘ƒ)))
8280, 81syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (SubRingβ€˜π‘ƒ) ∈ (Mooreβ€˜(Baseβ€˜π‘ƒ)))
8382ad2antrr 724 . . . . . . . . . 10 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ (SubRingβ€˜π‘ƒ) ∈ (Mooreβ€˜(Baseβ€˜π‘ƒ)))
84 simpr 485 . . . . . . . . . 10 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛))
85 rhmeql 20387 . . . . . . . . . . 11 ((π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆)) β†’ dom (π‘š ∩ 𝑛) ∈ (SubRingβ€˜π‘ƒ))
8685ad2antlr 725 . . . . . . . . . 10 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ dom (π‘š ∩ 𝑛) ∈ (SubRingβ€˜π‘ƒ))
87 eqid 2732 . . . . . . . . . . 11 (mrClsβ€˜(SubRingβ€˜π‘ƒ)) = (mrClsβ€˜(SubRingβ€˜π‘ƒ))
8887mrcsscl 17560 . . . . . . . . . 10 (((SubRingβ€˜π‘ƒ) ∈ (Mooreβ€˜(Baseβ€˜π‘ƒ)) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛) ∧ dom (π‘š ∩ 𝑛) ∈ (SubRingβ€˜π‘ƒ)) β†’ ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)) βŠ† dom (π‘š ∩ 𝑛))
8983, 84, 86, 88syl3anc 1371 . . . . . . . . 9 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)) βŠ† dom (π‘š ∩ 𝑛))
9078, 89eqsstrd 4019 . . . . . . . 8 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ (Baseβ€˜π‘ƒ) βŠ† dom (π‘š ∩ 𝑛))
9190ex 413 . . . . . . 7 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ ((ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛) β†’ (Baseβ€˜π‘ƒ) βŠ† dom (π‘š ∩ 𝑛)))
92 simprl 769 . . . . . . . . 9 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ π‘š ∈ (𝑃 RingHom 𝑆))
932, 3rhmf 20255 . . . . . . . . 9 (π‘š ∈ (𝑃 RingHom 𝑆) β†’ π‘š:(Baseβ€˜π‘ƒ)⟢𝐢)
94 ffn 6714 . . . . . . . . 9 (π‘š:(Baseβ€˜π‘ƒ)⟢𝐢 β†’ π‘š Fn (Baseβ€˜π‘ƒ))
9592, 93, 943syl 18 . . . . . . . 8 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ π‘š Fn (Baseβ€˜π‘ƒ))
96 simprr 771 . . . . . . . . 9 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ 𝑛 ∈ (𝑃 RingHom 𝑆))
972, 3rhmf 20255 . . . . . . . . 9 (𝑛 ∈ (𝑃 RingHom 𝑆) β†’ 𝑛:(Baseβ€˜π‘ƒ)⟢𝐢)
98 ffn 6714 . . . . . . . . 9 (𝑛:(Baseβ€˜π‘ƒ)⟢𝐢 β†’ 𝑛 Fn (Baseβ€˜π‘ƒ))
9996, 97, 983syl 18 . . . . . . . 8 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ 𝑛 Fn (Baseβ€˜π‘ƒ))
10069adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ ran 𝐴 βŠ† (Baseβ€˜π‘ƒ))
10171adantr 481 . . . . . . . . 9 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ ran 𝑉 βŠ† (Baseβ€˜π‘ƒ))
102100, 101unssd 4185 . . . . . . . 8 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ (ran 𝐴 βˆͺ ran 𝑉) βŠ† (Baseβ€˜π‘ƒ))
103 fnreseql 7046 . . . . . . . 8 ((π‘š Fn (Baseβ€˜π‘ƒ) ∧ 𝑛 Fn (Baseβ€˜π‘ƒ) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† (Baseβ€˜π‘ƒ)) β†’ ((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) ↔ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)))
10495, 99, 102, 103syl3anc 1371 . . . . . . 7 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ ((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) ↔ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)))
105 fneqeql2 7045 . . . . . . . 8 ((π‘š Fn (Baseβ€˜π‘ƒ) ∧ 𝑛 Fn (Baseβ€˜π‘ƒ)) β†’ (π‘š = 𝑛 ↔ (Baseβ€˜π‘ƒ) βŠ† dom (π‘š ∩ 𝑛)))
10695, 99, 105syl2anc 584 . . . . . . 7 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ (π‘š = 𝑛 ↔ (Baseβ€˜π‘ƒ) βŠ† dom (π‘š ∩ 𝑛)))
10791, 104, 1063imtr4d 293 . . . . . 6 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ ((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) β†’ π‘š = 𝑛))
10843, 107syl5 34 . . . . 5 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ (((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ∧ (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))) β†’ π‘š = 𝑛))
109108ralrimivva 3200 . . . 4 (πœ‘ β†’ βˆ€π‘š ∈ (𝑃 RingHom 𝑆)βˆ€π‘› ∈ (𝑃 RingHom 𝑆)(((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ∧ (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))) β†’ π‘š = 𝑛))
110 reseq1 5973 . . . . . 6 (π‘š = 𝑛 β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)))
111110eqeq1d 2734 . . . . 5 (π‘š = 𝑛 β†’ ((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ↔ (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))))
112111rmo4 3725 . . . 4 (βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)(π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ↔ βˆ€π‘š ∈ (𝑃 RingHom 𝑆)βˆ€π‘› ∈ (𝑃 RingHom 𝑆)(((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ∧ (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))) β†’ π‘š = 𝑛))
113109, 112sylibr 233 . . 3 (πœ‘ β†’ βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)(π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)))
114 rmoim 3735 . . 3 (βˆ€π‘š ∈ (𝑃 RingHom 𝑆)(((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))) β†’ (βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)(π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) β†’ βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺)))
11542, 113, 114sylc 65 . 2 (πœ‘ β†’ βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
116 reu5 3378 . 2 (βˆƒ!π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) ↔ (βˆƒπ‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) ∧ βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺)))
11724, 115, 116sylanbrc 583 1 (πœ‘ β†’ βˆƒ!π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  βˆƒ!wreu 3374  βˆƒ*wrmo 3375  {crab 3432   βˆͺ cun 3945   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601   ↦ cmpt 5230  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678   ∘ ccom 5679  Fun wfun 6534   Fn wfn 6535  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∘f cof 7664   ↑m cmap 8816  Fincfn 8935  β„•cn 12208  β„•0cn0 12468  Basecbs 17140  .rcmulr 17194   Ξ£g cgsu 17382  Moorecmre 17522  mrClscmrc 17523  .gcmg 18944  mulGrpcmgp 19981  Ringcrg 20049  CRingccrg 20050   RingHom crh 20240  SubRingcsubrg 20351  AssAlgcasa 21396  AlgSpancasp 21397  algSccascl 21398   mPwSer cmps 21448   mVar cmvr 21449   mPoly cmpl 21450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-srg 20003  df-ring 20051  df-cring 20052  df-rnghom 20243  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-assa 21399  df-asp 21400  df-ascl 21401  df-psr 21453  df-mvr 21454  df-mpl 21455
This theorem is referenced by:  evlsval2  21641  evlsval3  41128
  Copyright terms: Public domain W3C validator