MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlseu Structured version   Visualization version   GIF version

Theorem evlseu 22125
Description: For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlseu.p 𝑃 = (𝐼 mPoly 𝑅)
evlseu.c 𝐶 = (Base‘𝑆)
evlseu.a 𝐴 = (algSc‘𝑃)
evlseu.v 𝑉 = (𝐼 mVar 𝑅)
evlseu.i (𝜑𝐼𝑊)
evlseu.r (𝜑𝑅 ∈ CRing)
evlseu.s (𝜑𝑆 ∈ CRing)
evlseu.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlseu.g (𝜑𝐺:𝐼𝐶)
Assertion
Ref Expression
evlseu (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝑚,𝐺   𝑚,𝐼   𝑃,𝑚   𝜑,𝑚   𝑆,𝑚   𝑚,𝑉
Allowed substitution hints:   𝐶(𝑚)   𝑅(𝑚)   𝑊(𝑚)

Proof of Theorem evlseu
Dummy variables 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlseu.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2735 . . . 4 (Base‘𝑃) = (Base‘𝑃)
3 evlseu.c . . . 4 𝐶 = (Base‘𝑆)
4 eqid 2735 . . . 4 {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} = {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin}
5 eqid 2735 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
6 eqid 2735 . . . 4 (.g‘(mulGrp‘𝑆)) = (.g‘(mulGrp‘𝑆))
7 eqid 2735 . . . 4 (.r𝑆) = (.r𝑆)
8 evlseu.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
9 eqid 2735 . . . 4 (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺))))))
10 evlseu.i . . . 4 (𝜑𝐼𝑊)
11 evlseu.r . . . 4 (𝜑𝑅 ∈ CRing)
12 evlseu.s . . . 4 (𝜑𝑆 ∈ CRing)
13 evlseu.f . . . 4 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
14 evlseu.g . . . 4 (𝜑𝐺:𝐼𝐶)
15 evlseu.a . . . 4 𝐴 = (algSc‘𝑃)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15evlslem1 22124 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺))
17 coeq1 5871 . . . . . . 7 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (𝑚𝐴) = ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴))
1817eqeq1d 2737 . . . . . 6 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → ((𝑚𝐴) = 𝐹 ↔ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹))
19 coeq1 5871 . . . . . . 7 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (𝑚𝑉) = ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉))
2019eqeq1d 2737 . . . . . 6 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → ((𝑚𝑉) = 𝐺 ↔ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺))
2118, 20anbi12d 632 . . . . 5 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ↔ (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺)))
2221rspcev 3622 . . . 4 (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺)) → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
23223impb 1114 . . 3 (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺) → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
2416, 23syl 17 . 2 (𝜑 → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
25 eqid 2735 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
26 crngring 20263 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2711, 26syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
281, 2, 25, 15, 10, 27mplasclf 22107 . . . . . . . . 9 (𝜑𝐴:(Base‘𝑅)⟶(Base‘𝑃))
2928ffund 6741 . . . . . . . 8 (𝜑 → Fun 𝐴)
30 funcoeqres 6880 . . . . . . . 8 ((Fun 𝐴 ∧ (𝑚𝐴) = 𝐹) → (𝑚 ↾ ran 𝐴) = (𝐹𝐴))
3129, 30sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑚𝐴) = 𝐹) → (𝑚 ↾ ran 𝐴) = (𝐹𝐴))
321, 8, 2, 10, 27mvrf2 22031 . . . . . . . . 9 (𝜑𝑉:𝐼⟶(Base‘𝑃))
3332ffund 6741 . . . . . . . 8 (𝜑 → Fun 𝑉)
34 funcoeqres 6880 . . . . . . . 8 ((Fun 𝑉 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ ran 𝑉) = (𝐺𝑉))
3533, 34sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ ran 𝑉) = (𝐺𝑉))
3631, 35anim12dan 619 . . . . . 6 ((𝜑 ∧ ((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)) → ((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)))
3736ex 412 . . . . 5 (𝜑 → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → ((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉))))
38 resundi 6014 . . . . . 6 (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝑚 ↾ ran 𝐴) ∪ (𝑚 ↾ ran 𝑉))
39 uneq12 4173 . . . . . 6 (((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)) → ((𝑚 ↾ ran 𝐴) ∪ (𝑚 ↾ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
4038, 39eqtrid 2787 . . . . 5 (((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
4137, 40syl6 35 . . . 4 (𝜑 → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
4241ralrimivw 3148 . . 3 (𝜑 → ∀𝑚 ∈ (𝑃 RingHom 𝑆)(((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
43 eqtr3 2761 . . . . . 6 (((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)))
44 eqid 2735 . . . . . . . . . . . . 13 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4544, 10, 11psrassa 22011 . . . . . . . . . . . 12 (𝜑 → (𝐼 mPwSer 𝑅) ∈ AssAlg)
46 eqid 2735 . . . . . . . . . . . . . 14 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
4744, 8, 46, 10, 27mvrf 22023 . . . . . . . . . . . . 13 (𝜑𝑉:𝐼⟶(Base‘(𝐼 mPwSer 𝑅)))
4847frnd 6745 . . . . . . . . . . . 12 (𝜑 → ran 𝑉 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
49 eqid 2735 . . . . . . . . . . . . 13 (AlgSpan‘(𝐼 mPwSer 𝑅)) = (AlgSpan‘(𝐼 mPwSer 𝑅))
50 eqid 2735 . . . . . . . . . . . . 13 (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘(𝐼 mPwSer 𝑅))
51 eqid 2735 . . . . . . . . . . . . 13 (mrCls‘(SubRing‘(𝐼 mPwSer 𝑅))) = (mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))
5249, 50, 51, 46aspval2 21936 . . . . . . . . . . . 12 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘(𝐼 mPwSer 𝑅))) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
5345, 48, 52syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
541, 44, 8, 49, 10, 11mplbas2 22078 . . . . . . . . . . 11 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = (Base‘𝑃))
5544, 1, 2, 10, 27mplsubrg 22043 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
561, 44, 2mplval2 22034 . . . . . . . . . . . . . . . 16 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃))
5756subsubrg2 20616 . . . . . . . . . . . . . . 15 ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (SubRing‘𝑃) = ((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
5855, 57syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SubRing‘𝑃) = ((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
5958fveq2d 6911 . . . . . . . . . . . . 13 (𝜑 → (mrCls‘(SubRing‘𝑃)) = (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃))))
6050, 56ressascl 21934 . . . . . . . . . . . . . . . . 17 ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘𝑃))
6155, 60syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘𝑃))
6215, 61eqtr4id 2794 . . . . . . . . . . . . . . 15 (𝜑𝐴 = (algSc‘(𝐼 mPwSer 𝑅)))
6362rneqd 5952 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐴 = ran (algSc‘(𝐼 mPwSer 𝑅)))
6463uneq1d 4177 . . . . . . . . . . . . 13 (𝜑 → (ran 𝐴 ∪ ran 𝑉) = (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉))
6559, 64fveq12d 6914 . . . . . . . . . . . 12 (𝜑 → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) = ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
66 assaring 21899 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ AssAlg → (𝐼 mPwSer 𝑅) ∈ Ring)
6746subrgmre 20614 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ Ring → (SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))))
6845, 66, 673syl 18 . . . . . . . . . . . . 13 (𝜑 → (SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))))
6928frnd 6745 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐴 ⊆ (Base‘𝑃))
7063, 69eqsstrrd 4035 . . . . . . . . . . . . . 14 (𝜑 → ran (algSc‘(𝐼 mPwSer 𝑅)) ⊆ (Base‘𝑃))
7132frnd 6745 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑉 ⊆ (Base‘𝑃))
7270, 71unssd 4202 . . . . . . . . . . . . 13 (𝜑 → (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉) ⊆ (Base‘𝑃))
73 eqid 2735 . . . . . . . . . . . . . 14 (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃))) = (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
7451, 73submrc 17673 . . . . . . . . . . . . 13 (((SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))) ∧ (Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉) ⊆ (Base‘𝑃)) → ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
7568, 55, 72, 74syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
7665, 75eqtr2d 2776 . . . . . . . . . . 11 (𝜑 → ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
7753, 54, 763eqtr3d 2783 . . . . . . . . . 10 (𝜑 → (Base‘𝑃) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
7877ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (Base‘𝑃) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
791, 10, 27mplringd 22061 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Ring)
802subrgmre 20614 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
8179, 80syl 17 . . . . . . . . . . 11 (𝜑 → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
8281ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
83 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛))
84 rhmeql 20620 . . . . . . . . . . 11 ((𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆)) → dom (𝑚𝑛) ∈ (SubRing‘𝑃))
8584ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → dom (𝑚𝑛) ∈ (SubRing‘𝑃))
86 eqid 2735 . . . . . . . . . . 11 (mrCls‘(SubRing‘𝑃)) = (mrCls‘(SubRing‘𝑃))
8786mrcsscl 17665 . . . . . . . . . 10 (((SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛) ∧ dom (𝑚𝑛) ∈ (SubRing‘𝑃)) → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) ⊆ dom (𝑚𝑛))
8882, 83, 85, 87syl3anc 1370 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) ⊆ dom (𝑚𝑛))
8978, 88eqsstrd 4034 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (Base‘𝑃) ⊆ dom (𝑚𝑛))
9089ex 412 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛) → (Base‘𝑃) ⊆ dom (𝑚𝑛)))
91 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑚 ∈ (𝑃 RingHom 𝑆))
922, 3rhmf 20502 . . . . . . . . 9 (𝑚 ∈ (𝑃 RingHom 𝑆) → 𝑚:(Base‘𝑃)⟶𝐶)
93 ffn 6737 . . . . . . . . 9 (𝑚:(Base‘𝑃)⟶𝐶𝑚 Fn (Base‘𝑃))
9491, 92, 933syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑚 Fn (Base‘𝑃))
95 simprr 773 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑛 ∈ (𝑃 RingHom 𝑆))
962, 3rhmf 20502 . . . . . . . . 9 (𝑛 ∈ (𝑃 RingHom 𝑆) → 𝑛:(Base‘𝑃)⟶𝐶)
97 ffn 6737 . . . . . . . . 9 (𝑛:(Base‘𝑃)⟶𝐶𝑛 Fn (Base‘𝑃))
9895, 96, 973syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑛 Fn (Base‘𝑃))
9969adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ran 𝐴 ⊆ (Base‘𝑃))
10071adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ran 𝑉 ⊆ (Base‘𝑃))
10199, 100unssd 4202 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (ran 𝐴 ∪ ran 𝑉) ⊆ (Base‘𝑃))
102 fnreseql 7068 . . . . . . . 8 ((𝑚 Fn (Base‘𝑃) ∧ 𝑛 Fn (Base‘𝑃) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ (Base‘𝑃)) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) ↔ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)))
10394, 98, 101, 102syl3anc 1370 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) ↔ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)))
104 fneqeql2 7067 . . . . . . . 8 ((𝑚 Fn (Base‘𝑃) ∧ 𝑛 Fn (Base‘𝑃)) → (𝑚 = 𝑛 ↔ (Base‘𝑃) ⊆ dom (𝑚𝑛)))
10594, 98, 104syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (𝑚 = 𝑛 ↔ (Base‘𝑃) ⊆ dom (𝑚𝑛)))
10690, 103, 1053imtr4d 294 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) → 𝑚 = 𝑛))
10743, 106syl5 34 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
108107ralrimivva 3200 . . . 4 (𝜑 → ∀𝑚 ∈ (𝑃 RingHom 𝑆)∀𝑛 ∈ (𝑃 RingHom 𝑆)(((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
109 reseq1 5994 . . . . . 6 (𝑚 = 𝑛 → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)))
110109eqeq1d 2737 . . . . 5 (𝑚 = 𝑛 → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ↔ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
111110rmo4 3739 . . . 4 (∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ↔ ∀𝑚 ∈ (𝑃 RingHom 𝑆)∀𝑛 ∈ (𝑃 RingHom 𝑆)(((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
112108, 111sylibr 234 . . 3 (𝜑 → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
113 rmoim 3749 . . 3 (∀𝑚 ∈ (𝑃 RingHom 𝑆)(((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → (∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)))
11442, 112, 113sylc 65 . 2 (𝜑 → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
115 reu5 3380 . 2 (∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ↔ (∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ∧ ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)))
11624, 114, 115sylanbrc 583 1 (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wrex 3068  ∃!wreu 3376  ∃*wrmo 3377  {crab 3433  cun 3961  cin 3962  wss 3963  𝒫 cpw 4605  cmpt 5231  ccnv 5688  dom cdm 5689  ran crn 5690  cres 5691  cima 5692  ccom 5693  Fun wfun 6557   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  Fincfn 8984  cn 12264  0cn0 12524  Basecbs 17245  .rcmulr 17299   Σg cgsu 17487  Moorecmre 17627  mrClscmrc 17628  .gcmg 19098  mulGrpcmgp 20152  Ringcrg 20251  CRingccrg 20252   RingHom crh 20486  SubRingcsubrg 20586  AssAlgcasa 21888  AlgSpancasp 21889  algSccascl 21890   mPwSer cmps 21942   mVar cmvr 21943   mPoly cmpl 21944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949
This theorem is referenced by:  evlsval2  22129  evlsval3  42546
  Copyright terms: Public domain W3C validator