MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlseu Structured version   Visualization version   GIF version

Theorem evlseu 21865
Description: For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlseu.p 𝑃 = (𝐼 mPoly 𝑅)
evlseu.c 𝐢 = (Baseβ€˜π‘†)
evlseu.a 𝐴 = (algScβ€˜π‘ƒ)
evlseu.v 𝑉 = (𝐼 mVar 𝑅)
evlseu.i (πœ‘ β†’ 𝐼 ∈ π‘Š)
evlseu.r (πœ‘ β†’ 𝑅 ∈ CRing)
evlseu.s (πœ‘ β†’ 𝑆 ∈ CRing)
evlseu.f (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
evlseu.g (πœ‘ β†’ 𝐺:𝐼⟢𝐢)
Assertion
Ref Expression
evlseu (πœ‘ β†’ βˆƒ!π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
Distinct variable groups:   𝐴,π‘š   π‘š,𝐹   π‘š,𝐺   π‘š,𝐼   𝑃,π‘š   πœ‘,π‘š   𝑆,π‘š   π‘š,𝑉
Allowed substitution hints:   𝐢(π‘š)   𝑅(π‘š)   π‘Š(π‘š)

Proof of Theorem evlseu
Dummy variables 𝑛 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlseu.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2730 . . . 4 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
3 evlseu.c . . . 4 𝐢 = (Baseβ€˜π‘†)
4 eqid 2730 . . . 4 {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} = {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin}
5 eqid 2730 . . . 4 (mulGrpβ€˜π‘†) = (mulGrpβ€˜π‘†)
6 eqid 2730 . . . 4 (.gβ€˜(mulGrpβ€˜π‘†)) = (.gβ€˜(mulGrpβ€˜π‘†))
7 eqid 2730 . . . 4 (.rβ€˜π‘†) = (.rβ€˜π‘†)
8 evlseu.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
9 eqid 2730 . . . 4 (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺))))))
10 evlseu.i . . . 4 (πœ‘ β†’ 𝐼 ∈ π‘Š)
11 evlseu.r . . . 4 (πœ‘ β†’ 𝑅 ∈ CRing)
12 evlseu.s . . . 4 (πœ‘ β†’ 𝑆 ∈ CRing)
13 evlseu.f . . . 4 (πœ‘ β†’ 𝐹 ∈ (𝑅 RingHom 𝑆))
14 evlseu.g . . . 4 (πœ‘ β†’ 𝐺:𝐼⟢𝐢)
15 evlseu.a . . . 4 𝐴 = (algScβ€˜π‘ƒ)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15evlslem1 21864 . . 3 (πœ‘ β†’ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉) = 𝐺))
17 coeq1 5856 . . . . . . 7 (π‘š = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) β†’ (π‘š ∘ 𝐴) = ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴))
1817eqeq1d 2732 . . . . . 6 (π‘š = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) β†’ ((π‘š ∘ 𝐴) = 𝐹 ↔ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴) = 𝐹))
19 coeq1 5856 . . . . . . 7 (π‘š = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) β†’ (π‘š ∘ 𝑉) = ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉))
2019eqeq1d 2732 . . . . . 6 (π‘š = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) β†’ ((π‘š ∘ 𝑉) = 𝐺 ↔ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉) = 𝐺))
2118, 20anbi12d 629 . . . . 5 (π‘š = (π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) β†’ (((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) ↔ (((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉) = 𝐺)))
2221rspcev 3611 . . . 4 (((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ (((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉) = 𝐺)) β†’ βˆƒπ‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
23223impb 1113 . . 3 (((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((π‘₯ ∈ (Baseβ€˜π‘ƒ) ↦ (𝑆 Ξ£g (𝑦 ∈ {𝑧 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑧 β€œ β„•) ∈ Fin} ↦ ((πΉβ€˜(π‘₯β€˜π‘¦))(.rβ€˜π‘†)((mulGrpβ€˜π‘†) Ξ£g (𝑦 ∘f (.gβ€˜(mulGrpβ€˜π‘†))𝐺)))))) ∘ 𝑉) = 𝐺) β†’ βˆƒπ‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
2416, 23syl 17 . 2 (πœ‘ β†’ βˆƒπ‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
25 eqid 2730 . . . . . . . . . 10 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
26 crngring 20139 . . . . . . . . . . 11 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
2711, 26syl 17 . . . . . . . . . 10 (πœ‘ β†’ 𝑅 ∈ Ring)
281, 2, 25, 15, 10, 27mplasclf 21845 . . . . . . . . 9 (πœ‘ β†’ 𝐴:(Baseβ€˜π‘…)⟢(Baseβ€˜π‘ƒ))
2928ffund 6720 . . . . . . . 8 (πœ‘ β†’ Fun 𝐴)
30 funcoeqres 6863 . . . . . . . 8 ((Fun 𝐴 ∧ (π‘š ∘ 𝐴) = 𝐹) β†’ (π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴))
3129, 30sylan 578 . . . . . . 7 ((πœ‘ ∧ (π‘š ∘ 𝐴) = 𝐹) β†’ (π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴))
321, 8, 2, 10, 27mvrf2 21771 . . . . . . . . 9 (πœ‘ β†’ 𝑉:𝐼⟢(Baseβ€˜π‘ƒ))
3332ffund 6720 . . . . . . . 8 (πœ‘ β†’ Fun 𝑉)
34 funcoeqres 6863 . . . . . . . 8 ((Fun 𝑉 ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉))
3533, 34sylan 578 . . . . . . 7 ((πœ‘ ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉))
3631, 35anim12dan 617 . . . . . 6 ((πœ‘ ∧ ((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺)) β†’ ((π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴) ∧ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉)))
3736ex 411 . . . . 5 (πœ‘ β†’ (((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ ((π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴) ∧ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉))))
38 resundi 5994 . . . . . 6 (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((π‘š β†Ύ ran 𝐴) βˆͺ (π‘š β†Ύ ran 𝑉))
39 uneq12 4157 . . . . . 6 (((π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴) ∧ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉)) β†’ ((π‘š β†Ύ ran 𝐴) βˆͺ (π‘š β†Ύ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)))
4038, 39eqtrid 2782 . . . . 5 (((π‘š β†Ύ ran 𝐴) = (𝐹 ∘ ◑𝐴) ∧ (π‘š β†Ύ ran 𝑉) = (𝐺 ∘ ◑𝑉)) β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)))
4137, 40syl6 35 . . . 4 (πœ‘ β†’ (((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))))
4241ralrimivw 3148 . . 3 (πœ‘ β†’ βˆ€π‘š ∈ (𝑃 RingHom 𝑆)(((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))))
43 eqtr3 2756 . . . . . 6 (((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ∧ (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))) β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)))
44 eqid 2730 . . . . . . . . . . . . 13 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4544, 10, 11psrassa 21753 . . . . . . . . . . . 12 (πœ‘ β†’ (𝐼 mPwSer 𝑅) ∈ AssAlg)
46 eqid 2730 . . . . . . . . . . . . . 14 (Baseβ€˜(𝐼 mPwSer 𝑅)) = (Baseβ€˜(𝐼 mPwSer 𝑅))
4744, 8, 46, 10, 27mvrf 21763 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑉:𝐼⟢(Baseβ€˜(𝐼 mPwSer 𝑅)))
4847frnd 6724 . . . . . . . . . . . 12 (πœ‘ β†’ ran 𝑉 βŠ† (Baseβ€˜(𝐼 mPwSer 𝑅)))
49 eqid 2730 . . . . . . . . . . . . 13 (AlgSpanβ€˜(𝐼 mPwSer 𝑅)) = (AlgSpanβ€˜(𝐼 mPwSer 𝑅))
50 eqid 2730 . . . . . . . . . . . . 13 (algScβ€˜(𝐼 mPwSer 𝑅)) = (algScβ€˜(𝐼 mPwSer 𝑅))
51 eqid 2730 . . . . . . . . . . . . 13 (mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅))) = (mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))
5249, 50, 51, 46aspval2 21671 . . . . . . . . . . . 12 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ ran 𝑉 βŠ† (Baseβ€˜(𝐼 mPwSer 𝑅))) β†’ ((AlgSpanβ€˜(𝐼 mPwSer 𝑅))β€˜ran 𝑉) = ((mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)))
5345, 48, 52syl2anc 582 . . . . . . . . . . 11 (πœ‘ β†’ ((AlgSpanβ€˜(𝐼 mPwSer 𝑅))β€˜ran 𝑉) = ((mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)))
541, 44, 8, 49, 10, 11mplbas2 21816 . . . . . . . . . . 11 (πœ‘ β†’ ((AlgSpanβ€˜(𝐼 mPwSer 𝑅))β€˜ran 𝑉) = (Baseβ€˜π‘ƒ))
5544, 1, 2, 10, 27mplsubrg 21783 . . . . . . . . . . . . . . 15 (πœ‘ β†’ (Baseβ€˜π‘ƒ) ∈ (SubRingβ€˜(𝐼 mPwSer 𝑅)))
561, 44, 2mplval2 21774 . . . . . . . . . . . . . . . 16 𝑃 = ((𝐼 mPwSer 𝑅) β†Ύs (Baseβ€˜π‘ƒ))
5756subsubrg2 20489 . . . . . . . . . . . . . . 15 ((Baseβ€˜π‘ƒ) ∈ (SubRingβ€˜(𝐼 mPwSer 𝑅)) β†’ (SubRingβ€˜π‘ƒ) = ((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))
5855, 57syl 17 . . . . . . . . . . . . . 14 (πœ‘ β†’ (SubRingβ€˜π‘ƒ) = ((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))
5958fveq2d 6894 . . . . . . . . . . . . 13 (πœ‘ β†’ (mrClsβ€˜(SubRingβ€˜π‘ƒ)) = (mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ))))
6050, 56ressascl 21669 . . . . . . . . . . . . . . . . 17 ((Baseβ€˜π‘ƒ) ∈ (SubRingβ€˜(𝐼 mPwSer 𝑅)) β†’ (algScβ€˜(𝐼 mPwSer 𝑅)) = (algScβ€˜π‘ƒ))
6155, 60syl 17 . . . . . . . . . . . . . . . 16 (πœ‘ β†’ (algScβ€˜(𝐼 mPwSer 𝑅)) = (algScβ€˜π‘ƒ))
6215, 61eqtr4id 2789 . . . . . . . . . . . . . . 15 (πœ‘ β†’ 𝐴 = (algScβ€˜(𝐼 mPwSer 𝑅)))
6362rneqd 5936 . . . . . . . . . . . . . 14 (πœ‘ β†’ ran 𝐴 = ran (algScβ€˜(𝐼 mPwSer 𝑅)))
6463uneq1d 4161 . . . . . . . . . . . . 13 (πœ‘ β†’ (ran 𝐴 βˆͺ ran 𝑉) = (ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉))
6559, 64fveq12d 6897 . . . . . . . . . . . 12 (πœ‘ β†’ ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)) = ((mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)))
66 assaring 21635 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ AssAlg β†’ (𝐼 mPwSer 𝑅) ∈ Ring)
6746subrgmre 20487 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ Ring β†’ (SubRingβ€˜(𝐼 mPwSer 𝑅)) ∈ (Mooreβ€˜(Baseβ€˜(𝐼 mPwSer 𝑅))))
6845, 66, 673syl 18 . . . . . . . . . . . . 13 (πœ‘ β†’ (SubRingβ€˜(𝐼 mPwSer 𝑅)) ∈ (Mooreβ€˜(Baseβ€˜(𝐼 mPwSer 𝑅))))
6928frnd 6724 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ran 𝐴 βŠ† (Baseβ€˜π‘ƒ))
7063, 69eqsstrrd 4020 . . . . . . . . . . . . . 14 (πœ‘ β†’ ran (algScβ€˜(𝐼 mPwSer 𝑅)) βŠ† (Baseβ€˜π‘ƒ))
7132frnd 6724 . . . . . . . . . . . . . 14 (πœ‘ β†’ ran 𝑉 βŠ† (Baseβ€˜π‘ƒ))
7270, 71unssd 4185 . . . . . . . . . . . . 13 (πœ‘ β†’ (ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉) βŠ† (Baseβ€˜π‘ƒ))
73 eqid 2730 . . . . . . . . . . . . . 14 (mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ))) = (mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))
7451, 73submrc 17576 . . . . . . . . . . . . 13 (((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∈ (Mooreβ€˜(Baseβ€˜(𝐼 mPwSer 𝑅))) ∧ (Baseβ€˜π‘ƒ) ∈ (SubRingβ€˜(𝐼 mPwSer 𝑅)) ∧ (ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉) βŠ† (Baseβ€˜π‘ƒ)) β†’ ((mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)) = ((mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)))
7568, 55, 72, 74syl3anc 1369 . . . . . . . . . . . 12 (πœ‘ β†’ ((mrClsβ€˜((SubRingβ€˜(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Baseβ€˜π‘ƒ)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)) = ((mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)))
7665, 75eqtr2d 2771 . . . . . . . . . . 11 (πœ‘ β†’ ((mrClsβ€˜(SubRingβ€˜(𝐼 mPwSer 𝑅)))β€˜(ran (algScβ€˜(𝐼 mPwSer 𝑅)) βˆͺ ran 𝑉)) = ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)))
7753, 54, 763eqtr3d 2778 . . . . . . . . . 10 (πœ‘ β†’ (Baseβ€˜π‘ƒ) = ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)))
7877ad2antrr 722 . . . . . . . . 9 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ (Baseβ€˜π‘ƒ) = ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)))
791mplring 21797 . . . . . . . . . . . . 13 ((𝐼 ∈ π‘Š ∧ 𝑅 ∈ Ring) β†’ 𝑃 ∈ Ring)
8010, 27, 79syl2anc 582 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑃 ∈ Ring)
812subrgmre 20487 . . . . . . . . . . . 12 (𝑃 ∈ Ring β†’ (SubRingβ€˜π‘ƒ) ∈ (Mooreβ€˜(Baseβ€˜π‘ƒ)))
8280, 81syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (SubRingβ€˜π‘ƒ) ∈ (Mooreβ€˜(Baseβ€˜π‘ƒ)))
8382ad2antrr 722 . . . . . . . . . 10 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ (SubRingβ€˜π‘ƒ) ∈ (Mooreβ€˜(Baseβ€˜π‘ƒ)))
84 simpr 483 . . . . . . . . . 10 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛))
85 rhmeql 20493 . . . . . . . . . . 11 ((π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆)) β†’ dom (π‘š ∩ 𝑛) ∈ (SubRingβ€˜π‘ƒ))
8685ad2antlr 723 . . . . . . . . . 10 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ dom (π‘š ∩ 𝑛) ∈ (SubRingβ€˜π‘ƒ))
87 eqid 2730 . . . . . . . . . . 11 (mrClsβ€˜(SubRingβ€˜π‘ƒ)) = (mrClsβ€˜(SubRingβ€˜π‘ƒ))
8887mrcsscl 17568 . . . . . . . . . 10 (((SubRingβ€˜π‘ƒ) ∈ (Mooreβ€˜(Baseβ€˜π‘ƒ)) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛) ∧ dom (π‘š ∩ 𝑛) ∈ (SubRingβ€˜π‘ƒ)) β†’ ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)) βŠ† dom (π‘š ∩ 𝑛))
8983, 84, 86, 88syl3anc 1369 . . . . . . . . 9 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ ((mrClsβ€˜(SubRingβ€˜π‘ƒ))β€˜(ran 𝐴 βˆͺ ran 𝑉)) βŠ† dom (π‘š ∩ 𝑛))
9078, 89eqsstrd 4019 . . . . . . . 8 (((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)) β†’ (Baseβ€˜π‘ƒ) βŠ† dom (π‘š ∩ 𝑛))
9190ex 411 . . . . . . 7 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ ((ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛) β†’ (Baseβ€˜π‘ƒ) βŠ† dom (π‘š ∩ 𝑛)))
92 simprl 767 . . . . . . . . 9 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ π‘š ∈ (𝑃 RingHom 𝑆))
932, 3rhmf 20376 . . . . . . . . 9 (π‘š ∈ (𝑃 RingHom 𝑆) β†’ π‘š:(Baseβ€˜π‘ƒ)⟢𝐢)
94 ffn 6716 . . . . . . . . 9 (π‘š:(Baseβ€˜π‘ƒ)⟢𝐢 β†’ π‘š Fn (Baseβ€˜π‘ƒ))
9592, 93, 943syl 18 . . . . . . . 8 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ π‘š Fn (Baseβ€˜π‘ƒ))
96 simprr 769 . . . . . . . . 9 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ 𝑛 ∈ (𝑃 RingHom 𝑆))
972, 3rhmf 20376 . . . . . . . . 9 (𝑛 ∈ (𝑃 RingHom 𝑆) β†’ 𝑛:(Baseβ€˜π‘ƒ)⟢𝐢)
98 ffn 6716 . . . . . . . . 9 (𝑛:(Baseβ€˜π‘ƒ)⟢𝐢 β†’ 𝑛 Fn (Baseβ€˜π‘ƒ))
9996, 97, 983syl 18 . . . . . . . 8 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ 𝑛 Fn (Baseβ€˜π‘ƒ))
10069adantr 479 . . . . . . . . 9 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ ran 𝐴 βŠ† (Baseβ€˜π‘ƒ))
10171adantr 479 . . . . . . . . 9 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ ran 𝑉 βŠ† (Baseβ€˜π‘ƒ))
102100, 101unssd 4185 . . . . . . . 8 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ (ran 𝐴 βˆͺ ran 𝑉) βŠ† (Baseβ€˜π‘ƒ))
103 fnreseql 7048 . . . . . . . 8 ((π‘š Fn (Baseβ€˜π‘ƒ) ∧ 𝑛 Fn (Baseβ€˜π‘ƒ) ∧ (ran 𝐴 βˆͺ ran 𝑉) βŠ† (Baseβ€˜π‘ƒ)) β†’ ((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) ↔ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)))
10495, 99, 102, 103syl3anc 1369 . . . . . . 7 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ ((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) ↔ (ran 𝐴 βˆͺ ran 𝑉) βŠ† dom (π‘š ∩ 𝑛)))
105 fneqeql2 7047 . . . . . . . 8 ((π‘š Fn (Baseβ€˜π‘ƒ) ∧ 𝑛 Fn (Baseβ€˜π‘ƒ)) β†’ (π‘š = 𝑛 ↔ (Baseβ€˜π‘ƒ) βŠ† dom (π‘š ∩ 𝑛)))
10695, 99, 105syl2anc 582 . . . . . . 7 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ (π‘š = 𝑛 ↔ (Baseβ€˜π‘ƒ) βŠ† dom (π‘š ∩ 𝑛)))
10791, 104, 1063imtr4d 293 . . . . . 6 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ ((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) β†’ π‘š = 𝑛))
10843, 107syl5 34 . . . . 5 ((πœ‘ ∧ (π‘š ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) β†’ (((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ∧ (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))) β†’ π‘š = 𝑛))
109108ralrimivva 3198 . . . 4 (πœ‘ β†’ βˆ€π‘š ∈ (𝑃 RingHom 𝑆)βˆ€π‘› ∈ (𝑃 RingHom 𝑆)(((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ∧ (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))) β†’ π‘š = 𝑛))
110 reseq1 5974 . . . . . 6 (π‘š = 𝑛 β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)))
111110eqeq1d 2732 . . . . 5 (π‘š = 𝑛 β†’ ((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ↔ (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))))
112111rmo4 3725 . . . 4 (βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)(π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ↔ βˆ€π‘š ∈ (𝑃 RingHom 𝑆)βˆ€π‘› ∈ (𝑃 RingHom 𝑆)(((π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) ∧ (𝑛 β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))) β†’ π‘š = 𝑛))
113109, 112sylibr 233 . . 3 (πœ‘ β†’ βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)(π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)))
114 rmoim 3735 . . 3 (βˆ€π‘š ∈ (𝑃 RingHom 𝑆)(((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) β†’ (π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉))) β†’ (βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)(π‘š β†Ύ (ran 𝐴 βˆͺ ran 𝑉)) = ((𝐹 ∘ ◑𝐴) βˆͺ (𝐺 ∘ ◑𝑉)) β†’ βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺)))
11542, 113, 114sylc 65 . 2 (πœ‘ β†’ βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
116 reu5 3376 . 2 (βˆƒ!π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) ↔ (βˆƒπ‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺) ∧ βˆƒ*π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺)))
11724, 115, 116sylanbrc 581 1 (πœ‘ β†’ βˆƒ!π‘š ∈ (𝑃 RingHom 𝑆)((π‘š ∘ 𝐴) = 𝐹 ∧ (π‘š ∘ 𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βˆƒwrex 3068  βˆƒ!wreu 3372  βˆƒ*wrmo 3373  {crab 3430   βˆͺ cun 3945   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601   ↦ cmpt 5230  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678   ∘ ccom 5679  Fun wfun 6536   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   ∘f cof 7670   ↑m cmap 8822  Fincfn 8941  β„•cn 12216  β„•0cn0 12476  Basecbs 17148  .rcmulr 17202   Ξ£g cgsu 17390  Moorecmre 17530  mrClscmrc 17531  .gcmg 18986  mulGrpcmgp 20028  Ringcrg 20127  CRingccrg 20128   RingHom crh 20360  SubRingcsubrg 20457  AssAlgcasa 21624  AlgSpancasp 21625  algSccascl 21626   mPwSer cmps 21676   mVar cmvr 21677   mPoly cmpl 21678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-ofr 7673  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-sca 17217  df-vsca 17218  df-ip 17219  df-tset 17220  df-ple 17221  df-ds 17223  df-hom 17225  df-cco 17226  df-0g 17391  df-gsum 17392  df-prds 17397  df-pws 17399  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-grp 18858  df-minusg 18859  df-sbg 18860  df-mulg 18987  df-subg 19039  df-ghm 19128  df-cntz 19222  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-srg 20081  df-ring 20129  df-cring 20130  df-rhm 20363  df-subrng 20434  df-subrg 20459  df-lmod 20616  df-lss 20687  df-lsp 20727  df-assa 21627  df-asp 21628  df-ascl 21629  df-psr 21681  df-mvr 21682  df-mpl 21683
This theorem is referenced by:  evlsval2  21869  evlsval3  41433
  Copyright terms: Public domain W3C validator