MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlseu Structured version   Visualization version   GIF version

Theorem evlseu 21997
Description: For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlseu.p 𝑃 = (𝐼 mPoly 𝑅)
evlseu.c 𝐶 = (Base‘𝑆)
evlseu.a 𝐴 = (algSc‘𝑃)
evlseu.v 𝑉 = (𝐼 mVar 𝑅)
evlseu.i (𝜑𝐼𝑊)
evlseu.r (𝜑𝑅 ∈ CRing)
evlseu.s (𝜑𝑆 ∈ CRing)
evlseu.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlseu.g (𝜑𝐺:𝐼𝐶)
Assertion
Ref Expression
evlseu (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝑚,𝐺   𝑚,𝐼   𝑃,𝑚   𝜑,𝑚   𝑆,𝑚   𝑚,𝑉
Allowed substitution hints:   𝐶(𝑚)   𝑅(𝑚)   𝑊(𝑚)

Proof of Theorem evlseu
Dummy variables 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlseu.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2730 . . . 4 (Base‘𝑃) = (Base‘𝑃)
3 evlseu.c . . . 4 𝐶 = (Base‘𝑆)
4 eqid 2730 . . . 4 {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} = {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin}
5 eqid 2730 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
6 eqid 2730 . . . 4 (.g‘(mulGrp‘𝑆)) = (.g‘(mulGrp‘𝑆))
7 eqid 2730 . . . 4 (.r𝑆) = (.r𝑆)
8 evlseu.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
9 eqid 2730 . . . 4 (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺))))))
10 evlseu.i . . . 4 (𝜑𝐼𝑊)
11 evlseu.r . . . 4 (𝜑𝑅 ∈ CRing)
12 evlseu.s . . . 4 (𝜑𝑆 ∈ CRing)
13 evlseu.f . . . 4 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
14 evlseu.g . . . 4 (𝜑𝐺:𝐼𝐶)
15 evlseu.a . . . 4 𝐴 = (algSc‘𝑃)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15evlslem1 21996 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺))
17 coeq1 5824 . . . . . . 7 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (𝑚𝐴) = ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴))
1817eqeq1d 2732 . . . . . 6 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → ((𝑚𝐴) = 𝐹 ↔ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹))
19 coeq1 5824 . . . . . . 7 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (𝑚𝑉) = ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉))
2019eqeq1d 2732 . . . . . 6 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → ((𝑚𝑉) = 𝐺 ↔ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺))
2118, 20anbi12d 632 . . . . 5 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ↔ (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺)))
2221rspcev 3591 . . . 4 (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺)) → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
23223impb 1114 . . 3 (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺) → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
2416, 23syl 17 . 2 (𝜑 → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
25 eqid 2730 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
26 crngring 20161 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2711, 26syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
281, 2, 25, 15, 10, 27mplasclf 21979 . . . . . . . . 9 (𝜑𝐴:(Base‘𝑅)⟶(Base‘𝑃))
2928ffund 6695 . . . . . . . 8 (𝜑 → Fun 𝐴)
30 funcoeqres 6834 . . . . . . . 8 ((Fun 𝐴 ∧ (𝑚𝐴) = 𝐹) → (𝑚 ↾ ran 𝐴) = (𝐹𝐴))
3129, 30sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑚𝐴) = 𝐹) → (𝑚 ↾ ran 𝐴) = (𝐹𝐴))
321, 8, 2, 10, 27mvrf2 21909 . . . . . . . . 9 (𝜑𝑉:𝐼⟶(Base‘𝑃))
3332ffund 6695 . . . . . . . 8 (𝜑 → Fun 𝑉)
34 funcoeqres 6834 . . . . . . . 8 ((Fun 𝑉 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ ran 𝑉) = (𝐺𝑉))
3533, 34sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ ran 𝑉) = (𝐺𝑉))
3631, 35anim12dan 619 . . . . . 6 ((𝜑 ∧ ((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)) → ((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)))
3736ex 412 . . . . 5 (𝜑 → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → ((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉))))
38 resundi 5967 . . . . . 6 (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝑚 ↾ ran 𝐴) ∪ (𝑚 ↾ ran 𝑉))
39 uneq12 4129 . . . . . 6 (((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)) → ((𝑚 ↾ ran 𝐴) ∪ (𝑚 ↾ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
4038, 39eqtrid 2777 . . . . 5 (((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
4137, 40syl6 35 . . . 4 (𝜑 → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
4241ralrimivw 3130 . . 3 (𝜑 → ∀𝑚 ∈ (𝑃 RingHom 𝑆)(((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
43 eqtr3 2752 . . . . . 6 (((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)))
44 eqid 2730 . . . . . . . . . . . . 13 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4544, 10, 11psrassa 21889 . . . . . . . . . . . 12 (𝜑 → (𝐼 mPwSer 𝑅) ∈ AssAlg)
46 eqid 2730 . . . . . . . . . . . . . 14 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
4744, 8, 46, 10, 27mvrf 21901 . . . . . . . . . . . . 13 (𝜑𝑉:𝐼⟶(Base‘(𝐼 mPwSer 𝑅)))
4847frnd 6699 . . . . . . . . . . . 12 (𝜑 → ran 𝑉 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
49 eqid 2730 . . . . . . . . . . . . 13 (AlgSpan‘(𝐼 mPwSer 𝑅)) = (AlgSpan‘(𝐼 mPwSer 𝑅))
50 eqid 2730 . . . . . . . . . . . . 13 (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘(𝐼 mPwSer 𝑅))
51 eqid 2730 . . . . . . . . . . . . 13 (mrCls‘(SubRing‘(𝐼 mPwSer 𝑅))) = (mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))
5249, 50, 51, 46aspval2 21814 . . . . . . . . . . . 12 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘(𝐼 mPwSer 𝑅))) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
5345, 48, 52syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
541, 44, 8, 49, 10, 11mplbas2 21956 . . . . . . . . . . 11 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = (Base‘𝑃))
5544, 1, 2, 10, 27mplsubrg 21921 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
561, 44, 2mplval2 21912 . . . . . . . . . . . . . . . 16 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃))
5756subsubrg2 20515 . . . . . . . . . . . . . . 15 ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (SubRing‘𝑃) = ((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
5855, 57syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SubRing‘𝑃) = ((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
5958fveq2d 6865 . . . . . . . . . . . . 13 (𝜑 → (mrCls‘(SubRing‘𝑃)) = (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃))))
6050, 56ressascl 21812 . . . . . . . . . . . . . . . . 17 ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘𝑃))
6155, 60syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘𝑃))
6215, 61eqtr4id 2784 . . . . . . . . . . . . . . 15 (𝜑𝐴 = (algSc‘(𝐼 mPwSer 𝑅)))
6362rneqd 5905 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐴 = ran (algSc‘(𝐼 mPwSer 𝑅)))
6463uneq1d 4133 . . . . . . . . . . . . 13 (𝜑 → (ran 𝐴 ∪ ran 𝑉) = (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉))
6559, 64fveq12d 6868 . . . . . . . . . . . 12 (𝜑 → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) = ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
66 assaring 21777 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ AssAlg → (𝐼 mPwSer 𝑅) ∈ Ring)
6746subrgmre 20513 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ Ring → (SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))))
6845, 66, 673syl 18 . . . . . . . . . . . . 13 (𝜑 → (SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))))
6928frnd 6699 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐴 ⊆ (Base‘𝑃))
7063, 69eqsstrrd 3985 . . . . . . . . . . . . . 14 (𝜑 → ran (algSc‘(𝐼 mPwSer 𝑅)) ⊆ (Base‘𝑃))
7132frnd 6699 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑉 ⊆ (Base‘𝑃))
7270, 71unssd 4158 . . . . . . . . . . . . 13 (𝜑 → (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉) ⊆ (Base‘𝑃))
73 eqid 2730 . . . . . . . . . . . . . 14 (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃))) = (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
7451, 73submrc 17596 . . . . . . . . . . . . 13 (((SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))) ∧ (Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉) ⊆ (Base‘𝑃)) → ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
7568, 55, 72, 74syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
7665, 75eqtr2d 2766 . . . . . . . . . . 11 (𝜑 → ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
7753, 54, 763eqtr3d 2773 . . . . . . . . . 10 (𝜑 → (Base‘𝑃) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
7877ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (Base‘𝑃) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
791, 10, 27mplringd 21939 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Ring)
802subrgmre 20513 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
8179, 80syl 17 . . . . . . . . . . 11 (𝜑 → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
8281ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
83 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛))
84 rhmeql 20519 . . . . . . . . . . 11 ((𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆)) → dom (𝑚𝑛) ∈ (SubRing‘𝑃))
8584ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → dom (𝑚𝑛) ∈ (SubRing‘𝑃))
86 eqid 2730 . . . . . . . . . . 11 (mrCls‘(SubRing‘𝑃)) = (mrCls‘(SubRing‘𝑃))
8786mrcsscl 17588 . . . . . . . . . 10 (((SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛) ∧ dom (𝑚𝑛) ∈ (SubRing‘𝑃)) → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) ⊆ dom (𝑚𝑛))
8882, 83, 85, 87syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) ⊆ dom (𝑚𝑛))
8978, 88eqsstrd 3984 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (Base‘𝑃) ⊆ dom (𝑚𝑛))
9089ex 412 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛) → (Base‘𝑃) ⊆ dom (𝑚𝑛)))
91 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑚 ∈ (𝑃 RingHom 𝑆))
922, 3rhmf 20401 . . . . . . . . 9 (𝑚 ∈ (𝑃 RingHom 𝑆) → 𝑚:(Base‘𝑃)⟶𝐶)
93 ffn 6691 . . . . . . . . 9 (𝑚:(Base‘𝑃)⟶𝐶𝑚 Fn (Base‘𝑃))
9491, 92, 933syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑚 Fn (Base‘𝑃))
95 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑛 ∈ (𝑃 RingHom 𝑆))
962, 3rhmf 20401 . . . . . . . . 9 (𝑛 ∈ (𝑃 RingHom 𝑆) → 𝑛:(Base‘𝑃)⟶𝐶)
97 ffn 6691 . . . . . . . . 9 (𝑛:(Base‘𝑃)⟶𝐶𝑛 Fn (Base‘𝑃))
9895, 96, 973syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑛 Fn (Base‘𝑃))
9969adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ran 𝐴 ⊆ (Base‘𝑃))
10071adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ran 𝑉 ⊆ (Base‘𝑃))
10199, 100unssd 4158 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (ran 𝐴 ∪ ran 𝑉) ⊆ (Base‘𝑃))
102 fnreseql 7023 . . . . . . . 8 ((𝑚 Fn (Base‘𝑃) ∧ 𝑛 Fn (Base‘𝑃) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ (Base‘𝑃)) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) ↔ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)))
10394, 98, 101, 102syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) ↔ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)))
104 fneqeql2 7022 . . . . . . . 8 ((𝑚 Fn (Base‘𝑃) ∧ 𝑛 Fn (Base‘𝑃)) → (𝑚 = 𝑛 ↔ (Base‘𝑃) ⊆ dom (𝑚𝑛)))
10594, 98, 104syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (𝑚 = 𝑛 ↔ (Base‘𝑃) ⊆ dom (𝑚𝑛)))
10690, 103, 1053imtr4d 294 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) → 𝑚 = 𝑛))
10743, 106syl5 34 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
108107ralrimivva 3181 . . . 4 (𝜑 → ∀𝑚 ∈ (𝑃 RingHom 𝑆)∀𝑛 ∈ (𝑃 RingHom 𝑆)(((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
109 reseq1 5947 . . . . . 6 (𝑚 = 𝑛 → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)))
110109eqeq1d 2732 . . . . 5 (𝑚 = 𝑛 → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ↔ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
111110rmo4 3704 . . . 4 (∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ↔ ∀𝑚 ∈ (𝑃 RingHom 𝑆)∀𝑛 ∈ (𝑃 RingHom 𝑆)(((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
112108, 111sylibr 234 . . 3 (𝜑 → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
113 rmoim 3714 . . 3 (∀𝑚 ∈ (𝑃 RingHom 𝑆)(((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → (∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)))
11442, 112, 113sylc 65 . 2 (𝜑 → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
115 reu5 3358 . 2 (∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ↔ (∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ∧ ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)))
11624, 114, 115sylanbrc 583 1 (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  ∃*wrmo 3355  {crab 3408  cun 3915  cin 3916  wss 3917  𝒫 cpw 4566  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  m cmap 8802  Fincfn 8921  cn 12193  0cn0 12449  Basecbs 17186  .rcmulr 17228   Σg cgsu 17410  Moorecmre 17550  mrClscmrc 17551  .gcmg 19006  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  SubRingcsubrg 20485  AssAlgcasa 21766  AlgSpancasp 21767  algSccascl 21768   mPwSer cmps 21820   mVar cmvr 21821   mPoly cmpl 21822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827
This theorem is referenced by:  evlsval2  22001  evlsval3  42554
  Copyright terms: Public domain W3C validator