MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlseu Structured version   Visualization version   GIF version

Theorem evlseu 22018
Description: For a given interpretation of the variables 𝐺 and of the scalars 𝐹, this extends to a homomorphic interpretation of the polynomial ring in exactly one way. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
evlseu.p 𝑃 = (𝐼 mPoly 𝑅)
evlseu.c 𝐶 = (Base‘𝑆)
evlseu.a 𝐴 = (algSc‘𝑃)
evlseu.v 𝑉 = (𝐼 mVar 𝑅)
evlseu.i (𝜑𝐼𝑊)
evlseu.r (𝜑𝑅 ∈ CRing)
evlseu.s (𝜑𝑆 ∈ CRing)
evlseu.f (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
evlseu.g (𝜑𝐺:𝐼𝐶)
Assertion
Ref Expression
evlseu (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐹   𝑚,𝐺   𝑚,𝐼   𝑃,𝑚   𝜑,𝑚   𝑆,𝑚   𝑚,𝑉
Allowed substitution hints:   𝐶(𝑚)   𝑅(𝑚)   𝑊(𝑚)

Proof of Theorem evlseu
Dummy variables 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evlseu.p . . . 4 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2731 . . . 4 (Base‘𝑃) = (Base‘𝑃)
3 evlseu.c . . . 4 𝐶 = (Base‘𝑆)
4 eqid 2731 . . . 4 {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} = {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin}
5 eqid 2731 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
6 eqid 2731 . . . 4 (.g‘(mulGrp‘𝑆)) = (.g‘(mulGrp‘𝑆))
7 eqid 2731 . . . 4 (.r𝑆) = (.r𝑆)
8 evlseu.v . . . 4 𝑉 = (𝐼 mVar 𝑅)
9 eqid 2731 . . . 4 (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺))))))
10 evlseu.i . . . 4 (𝜑𝐼𝑊)
11 evlseu.r . . . 4 (𝜑𝑅 ∈ CRing)
12 evlseu.s . . . 4 (𝜑𝑆 ∈ CRing)
13 evlseu.f . . . 4 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
14 evlseu.g . . . 4 (𝜑𝐺:𝐼𝐶)
15 evlseu.a . . . 4 𝐴 = (algSc‘𝑃)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15evlslem1 22017 . . 3 (𝜑 → ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺))
17 coeq1 5796 . . . . . . 7 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (𝑚𝐴) = ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴))
1817eqeq1d 2733 . . . . . 6 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → ((𝑚𝐴) = 𝐹 ↔ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹))
19 coeq1 5796 . . . . . . 7 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (𝑚𝑉) = ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉))
2019eqeq1d 2733 . . . . . 6 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → ((𝑚𝑉) = 𝐺 ↔ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺))
2118, 20anbi12d 632 . . . . 5 (𝑚 = (𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ↔ (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺)))
2221rspcev 3572 . . . 4 (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺)) → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
23223impb 1114 . . 3 (((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∈ (𝑃 RingHom 𝑆) ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝐴) = 𝐹 ∧ ((𝑥 ∈ (Base‘𝑃) ↦ (𝑆 Σg (𝑦 ∈ {𝑧 ∈ (ℕ0m 𝐼) ∣ (𝑧 “ ℕ) ∈ Fin} ↦ ((𝐹‘(𝑥𝑦))(.r𝑆)((mulGrp‘𝑆) Σg (𝑦f (.g‘(mulGrp‘𝑆))𝐺)))))) ∘ 𝑉) = 𝐺) → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
2416, 23syl 17 . 2 (𝜑 → ∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
25 eqid 2731 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
26 crngring 20163 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2711, 26syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
281, 2, 25, 15, 10, 27mplasclf 22000 . . . . . . . . 9 (𝜑𝐴:(Base‘𝑅)⟶(Base‘𝑃))
2928ffund 6655 . . . . . . . 8 (𝜑 → Fun 𝐴)
30 funcoeqres 6794 . . . . . . . 8 ((Fun 𝐴 ∧ (𝑚𝐴) = 𝐹) → (𝑚 ↾ ran 𝐴) = (𝐹𝐴))
3129, 30sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑚𝐴) = 𝐹) → (𝑚 ↾ ran 𝐴) = (𝐹𝐴))
321, 8, 2, 10, 27mvrf2 21930 . . . . . . . . 9 (𝜑𝑉:𝐼⟶(Base‘𝑃))
3332ffund 6655 . . . . . . . 8 (𝜑 → Fun 𝑉)
34 funcoeqres 6794 . . . . . . . 8 ((Fun 𝑉 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ ran 𝑉) = (𝐺𝑉))
3533, 34sylan 580 . . . . . . 7 ((𝜑 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ ran 𝑉) = (𝐺𝑉))
3631, 35anim12dan 619 . . . . . 6 ((𝜑 ∧ ((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)) → ((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)))
3736ex 412 . . . . 5 (𝜑 → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → ((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉))))
38 resundi 5941 . . . . . 6 (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝑚 ↾ ran 𝐴) ∪ (𝑚 ↾ ran 𝑉))
39 uneq12 4110 . . . . . 6 (((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)) → ((𝑚 ↾ ran 𝐴) ∪ (𝑚 ↾ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
4038, 39eqtrid 2778 . . . . 5 (((𝑚 ↾ ran 𝐴) = (𝐹𝐴) ∧ (𝑚 ↾ ran 𝑉) = (𝐺𝑉)) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
4137, 40syl6 35 . . . 4 (𝜑 → (((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
4241ralrimivw 3128 . . 3 (𝜑 → ∀𝑚 ∈ (𝑃 RingHom 𝑆)(((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
43 eqtr3 2753 . . . . . 6 (((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)))
44 eqid 2731 . . . . . . . . . . . . 13 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4544, 10, 11psrassa 21910 . . . . . . . . . . . 12 (𝜑 → (𝐼 mPwSer 𝑅) ∈ AssAlg)
46 eqid 2731 . . . . . . . . . . . . . 14 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
4744, 8, 46, 10, 27mvrf 21922 . . . . . . . . . . . . 13 (𝜑𝑉:𝐼⟶(Base‘(𝐼 mPwSer 𝑅)))
4847frnd 6659 . . . . . . . . . . . 12 (𝜑 → ran 𝑉 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
49 eqid 2731 . . . . . . . . . . . . 13 (AlgSpan‘(𝐼 mPwSer 𝑅)) = (AlgSpan‘(𝐼 mPwSer 𝑅))
50 eqid 2731 . . . . . . . . . . . . 13 (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘(𝐼 mPwSer 𝑅))
51 eqid 2731 . . . . . . . . . . . . 13 (mrCls‘(SubRing‘(𝐼 mPwSer 𝑅))) = (mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))
5249, 50, 51, 46aspval2 21835 . . . . . . . . . . . 12 (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘(𝐼 mPwSer 𝑅))) → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
5345, 48, 52syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
541, 44, 8, 49, 10, 11mplbas2 21977 . . . . . . . . . . 11 (𝜑 → ((AlgSpan‘(𝐼 mPwSer 𝑅))‘ran 𝑉) = (Base‘𝑃))
5544, 1, 2, 10, 27mplsubrg 21942 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
561, 44, 2mplval2 21933 . . . . . . . . . . . . . . . 16 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃))
5756subsubrg2 20514 . . . . . . . . . . . . . . 15 ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (SubRing‘𝑃) = ((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
5855, 57syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SubRing‘𝑃) = ((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
5958fveq2d 6826 . . . . . . . . . . . . 13 (𝜑 → (mrCls‘(SubRing‘𝑃)) = (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃))))
6050, 56ressascl 21833 . . . . . . . . . . . . . . . . 17 ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘𝑃))
6155, 60syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (algSc‘(𝐼 mPwSer 𝑅)) = (algSc‘𝑃))
6215, 61eqtr4id 2785 . . . . . . . . . . . . . . 15 (𝜑𝐴 = (algSc‘(𝐼 mPwSer 𝑅)))
6362rneqd 5877 . . . . . . . . . . . . . 14 (𝜑 → ran 𝐴 = ran (algSc‘(𝐼 mPwSer 𝑅)))
6463uneq1d 4114 . . . . . . . . . . . . 13 (𝜑 → (ran 𝐴 ∪ ran 𝑉) = (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉))
6559, 64fveq12d 6829 . . . . . . . . . . . 12 (𝜑 → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) = ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
66 assaring 21798 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ AssAlg → (𝐼 mPwSer 𝑅) ∈ Ring)
6746subrgmre 20512 . . . . . . . . . . . . . 14 ((𝐼 mPwSer 𝑅) ∈ Ring → (SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))))
6845, 66, 673syl 18 . . . . . . . . . . . . 13 (𝜑 → (SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))))
6928frnd 6659 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐴 ⊆ (Base‘𝑃))
7063, 69eqsstrrd 3965 . . . . . . . . . . . . . 14 (𝜑 → ran (algSc‘(𝐼 mPwSer 𝑅)) ⊆ (Base‘𝑃))
7132frnd 6659 . . . . . . . . . . . . . 14 (𝜑 → ran 𝑉 ⊆ (Base‘𝑃))
7270, 71unssd 4139 . . . . . . . . . . . . 13 (𝜑 → (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉) ⊆ (Base‘𝑃))
73 eqid 2731 . . . . . . . . . . . . . 14 (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃))) = (mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))
7451, 73submrc 17534 . . . . . . . . . . . . 13 (((SubRing‘(𝐼 mPwSer 𝑅)) ∈ (Moore‘(Base‘(𝐼 mPwSer 𝑅))) ∧ (Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉) ⊆ (Base‘𝑃)) → ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
7568, 55, 72, 74syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((mrCls‘((SubRing‘(𝐼 mPwSer 𝑅)) ∩ 𝒫 (Base‘𝑃)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)))
7665, 75eqtr2d 2767 . . . . . . . . . . 11 (𝜑 → ((mrCls‘(SubRing‘(𝐼 mPwSer 𝑅)))‘(ran (algSc‘(𝐼 mPwSer 𝑅)) ∪ ran 𝑉)) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
7753, 54, 763eqtr3d 2774 . . . . . . . . . 10 (𝜑 → (Base‘𝑃) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
7877ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (Base‘𝑃) = ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)))
791, 10, 27mplringd 21960 . . . . . . . . . . . 12 (𝜑𝑃 ∈ Ring)
802subrgmre 20512 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
8179, 80syl 17 . . . . . . . . . . 11 (𝜑 → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
8281ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)))
83 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛))
84 rhmeql 20518 . . . . . . . . . . 11 ((𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆)) → dom (𝑚𝑛) ∈ (SubRing‘𝑃))
8584ad2antlr 727 . . . . . . . . . 10 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → dom (𝑚𝑛) ∈ (SubRing‘𝑃))
86 eqid 2731 . . . . . . . . . . 11 (mrCls‘(SubRing‘𝑃)) = (mrCls‘(SubRing‘𝑃))
8786mrcsscl 17526 . . . . . . . . . 10 (((SubRing‘𝑃) ∈ (Moore‘(Base‘𝑃)) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛) ∧ dom (𝑚𝑛) ∈ (SubRing‘𝑃)) → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) ⊆ dom (𝑚𝑛))
8882, 83, 85, 87syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → ((mrCls‘(SubRing‘𝑃))‘(ran 𝐴 ∪ ran 𝑉)) ⊆ dom (𝑚𝑛))
8978, 88eqsstrd 3964 . . . . . . . 8 (((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)) → (Base‘𝑃) ⊆ dom (𝑚𝑛))
9089ex 412 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛) → (Base‘𝑃) ⊆ dom (𝑚𝑛)))
91 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑚 ∈ (𝑃 RingHom 𝑆))
922, 3rhmf 20402 . . . . . . . . 9 (𝑚 ∈ (𝑃 RingHom 𝑆) → 𝑚:(Base‘𝑃)⟶𝐶)
93 ffn 6651 . . . . . . . . 9 (𝑚:(Base‘𝑃)⟶𝐶𝑚 Fn (Base‘𝑃))
9491, 92, 933syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑚 Fn (Base‘𝑃))
95 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑛 ∈ (𝑃 RingHom 𝑆))
962, 3rhmf 20402 . . . . . . . . 9 (𝑛 ∈ (𝑃 RingHom 𝑆) → 𝑛:(Base‘𝑃)⟶𝐶)
97 ffn 6651 . . . . . . . . 9 (𝑛:(Base‘𝑃)⟶𝐶𝑛 Fn (Base‘𝑃))
9895, 96, 973syl 18 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → 𝑛 Fn (Base‘𝑃))
9969adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ran 𝐴 ⊆ (Base‘𝑃))
10071adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ran 𝑉 ⊆ (Base‘𝑃))
10199, 100unssd 4139 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (ran 𝐴 ∪ ran 𝑉) ⊆ (Base‘𝑃))
102 fnreseql 6981 . . . . . . . 8 ((𝑚 Fn (Base‘𝑃) ∧ 𝑛 Fn (Base‘𝑃) ∧ (ran 𝐴 ∪ ran 𝑉) ⊆ (Base‘𝑃)) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) ↔ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)))
10394, 98, 101, 102syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) ↔ (ran 𝐴 ∪ ran 𝑉) ⊆ dom (𝑚𝑛)))
104 fneqeql2 6980 . . . . . . . 8 ((𝑚 Fn (Base‘𝑃) ∧ 𝑛 Fn (Base‘𝑃)) → (𝑚 = 𝑛 ↔ (Base‘𝑃) ⊆ dom (𝑚𝑛)))
10594, 98, 104syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (𝑚 = 𝑛 ↔ (Base‘𝑃) ⊆ dom (𝑚𝑛)))
10690, 103, 1053imtr4d 294 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) → 𝑚 = 𝑛))
10743, 106syl5 34 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (𝑃 RingHom 𝑆) ∧ 𝑛 ∈ (𝑃 RingHom 𝑆))) → (((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
108107ralrimivva 3175 . . . 4 (𝜑 → ∀𝑚 ∈ (𝑃 RingHom 𝑆)∀𝑛 ∈ (𝑃 RingHom 𝑆)(((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
109 reseq1 5921 . . . . . 6 (𝑚 = 𝑛 → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)))
110109eqeq1d 2733 . . . . 5 (𝑚 = 𝑛 → ((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ↔ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))))
111110rmo4 3684 . . . 4 (∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ↔ ∀𝑚 ∈ (𝑃 RingHom 𝑆)∀𝑛 ∈ (𝑃 RingHom 𝑆)(((𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) ∧ (𝑛 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → 𝑚 = 𝑛))
112108, 111sylibr 234 . . 3 (𝜑 → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)))
113 rmoim 3694 . . 3 (∀𝑚 ∈ (𝑃 RingHom 𝑆)(((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) → (𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉))) → (∃*𝑚 ∈ (𝑃 RingHom 𝑆)(𝑚 ↾ (ran 𝐴 ∪ ran 𝑉)) = ((𝐹𝐴) ∪ (𝐺𝑉)) → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)))
11442, 112, 113sylc 65 . 2 (𝜑 → ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
115 reu5 3348 . 2 (∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ↔ (∃𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺) ∧ ∃*𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺)))
11624, 114, 115sylanbrc 583 1 (𝜑 → ∃!𝑚 ∈ (𝑃 RingHom 𝑆)((𝑚𝐴) = 𝐹 ∧ (𝑚𝑉) = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  ∃*wrmo 3345  {crab 3395  cun 3895  cin 3896  wss 3897  𝒫 cpw 4547  cmpt 5170  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  cima 5617  ccom 5618  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  m cmap 8750  Fincfn 8869  cn 12125  0cn0 12381  Basecbs 17120  .rcmulr 17162   Σg cgsu 17344  Moorecmre 17484  mrClscmrc 17485  .gcmg 18980  mulGrpcmgp 20058  Ringcrg 20151  CRingccrg 20152   RingHom crh 20387  SubRingcsubrg 20484  AssAlgcasa 21787  AlgSpancasp 21788  algSccascl 21789   mPwSer cmps 21841   mVar cmvr 21842   mPoly cmpl 21843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848
This theorem is referenced by:  evlsval2  22022  evlsval3  42662
  Copyright terms: Public domain W3C validator