Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem21 Structured version   Visualization version   GIF version

Theorem poimirlem21 36999
Description: Lemma for poimir 37011 stating that, given a face not on a back face of the cube and a simplex in which it's opposite the final point of the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (𝜑𝑇𝑆)
poimirlem22.3 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
poimirlem21.4 (𝜑 → (2nd𝑇) = 𝑁)
Assertion
Ref Expression
poimirlem21 (𝜑 → ∃!𝑧𝑆 𝑧𝑇)
Distinct variable groups:   𝑓,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧   𝜑,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝜑,𝑝,𝑡   𝑓,𝐾,𝑗,𝑛,𝑝,𝑡   𝑓,𝑁,𝑝,𝑡   𝑇,𝑓,𝑝   𝜑,𝑧   𝑓,𝐹,𝑝,𝑡,𝑧   𝑧,𝐾   𝑧,𝑁   𝑡,𝑇,𝑧   𝑆,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem21
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . 3 (𝜑𝑁 ∈ ℕ)
2 poimirlem22.s . . 3 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
3 poimirlem22.1 . . 3 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
4 poimirlem22.2 . . 3 (𝜑𝑇𝑆)
5 poimirlem22.3 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
6 poimirlem21.4 . . 3 (𝜑 → (2nd𝑇) = 𝑁)
71, 2, 3, 4, 5, 6poimirlem20 36998 . 2 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
86adantr 480 . . . . . . . 8 ((𝜑𝑧𝑆) → (2nd𝑇) = 𝑁)
91nnred 12224 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
109ltm1d 12143 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − 1) < 𝑁)
11 nnm1nn0 12510 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
121, 11syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 1) ∈ ℕ0)
1312nn0red 12530 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℝ)
1413, 9ltnled 11358 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1)))
1510, 14mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1))
16 elfzle2 13502 . . . . . . . . . . . . . 14 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
1715, 16nsyl 140 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1)))
18 eleq1 2813 . . . . . . . . . . . . . 14 ((2nd𝑧) = 𝑁 → ((2nd𝑧) ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1))))
1918notbid 318 . . . . . . . . . . . . 13 ((2nd𝑧) = 𝑁 → (¬ (2nd𝑧) ∈ (1...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1))))
2017, 19syl5ibrcom 246 . . . . . . . . . . . 12 (𝜑 → ((2nd𝑧) = 𝑁 → ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))))
2120necon2ad 2947 . . . . . . . . . . 11 (𝜑 → ((2nd𝑧) ∈ (1...(𝑁 − 1)) → (2nd𝑧) ≠ 𝑁))
2221adantr 480 . . . . . . . . . 10 ((𝜑𝑧𝑆) → ((2nd𝑧) ∈ (1...(𝑁 − 1)) → (2nd𝑧) ≠ 𝑁))
231ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ)
24 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑧 → (2nd𝑡) = (2nd𝑧))
2524breq2d 5150 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑧 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑧)))
2625ifbid 4543 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑧 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)))
2726csbeq1d 3889 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑧if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
28 2fveq3 6886 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑧 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑧)))
29 2fveq3 6886 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑧 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑧)))
3029imaeq1d 6048 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑧 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑧)) “ (1...𝑗)))
3130xpeq1d 5695 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑧 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}))
3229imaeq1d 6048 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑧 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)))
3332xpeq1d 5695 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑧 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))
3431, 33uneq12d 4156 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑧 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))
3528, 34oveq12d 7419 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑧 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))
3635csbeq2dv 3892 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑧if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))
3727, 36eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑧if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))
3837mpteq2dv 5240 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑧 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))
3938eqeq2d 2735 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑧 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
4039, 2elrab2 3678 . . . . . . . . . . . . . . . 16 (𝑧𝑆 ↔ (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
4140simprbi 496 . . . . . . . . . . . . . . 15 (𝑧𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))
4241ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))
43 elrabi 3669 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
4443, 2eleq2s 2843 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑆𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
45 xp1st 8000 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 (𝑧𝑆 → (1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
47 xp1st 8000 . . . . . . . . . . . . . . . . . 18 ((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
4846, 47syl 17 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 → (1st ‘(1st𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
49 elmapi 8839 . . . . . . . . . . . . . . . . 17 ((1st ‘(1st𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑧)):(1...𝑁)⟶(0..^𝐾))
5048, 49syl 17 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → (1st ‘(1st𝑧)):(1...𝑁)⟶(0..^𝐾))
51 elfzoelz 13629 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝐾) → 𝑛 ∈ ℤ)
5251ssriv 3978 . . . . . . . . . . . . . . . 16 (0..^𝐾) ⊆ ℤ
53 fss 6724 . . . . . . . . . . . . . . . 16 (((1st ‘(1st𝑧)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st ‘(1st𝑧)):(1...𝑁)⟶ℤ)
5450, 52, 53sylancl 585 . . . . . . . . . . . . . . 15 (𝑧𝑆 → (1st ‘(1st𝑧)):(1...𝑁)⟶ℤ)
5554ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (1st ‘(1st𝑧)):(1...𝑁)⟶ℤ)
56 xp2nd 8001 . . . . . . . . . . . . . . . . 17 ((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
5746, 56syl 17 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → (2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
58 fvex 6894 . . . . . . . . . . . . . . . . 17 (2nd ‘(1st𝑧)) ∈ V
59 f1oeq1 6811 . . . . . . . . . . . . . . . . 17 (𝑓 = (2nd ‘(1st𝑧)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)))
6058, 59elab 3660 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
6157, 60sylib 217 . . . . . . . . . . . . . . 15 (𝑧𝑆 → (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
6261ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
63 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd𝑧) ∈ (1...(𝑁 − 1)))
6423, 42, 55, 62, 63poimirlem1 36979 . . . . . . . . . . . . 13 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑧))‘𝑛))
651ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → 𝑁 ∈ ℕ)
66 fveq2 6881 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
6766breq2d 5150 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
6867ifbid 4543 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
6968csbeq1d 3889 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
70 2fveq3 6886 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
71 2fveq3 6886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
7271imaeq1d 6048 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
7372xpeq1d 5695 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
7471imaeq1d 6048 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
7574xpeq1d 5695 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
7673, 75uneq12d 4156 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
7770, 76oveq12d 7419 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
7877csbeq2dv 3892 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
7969, 78eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
8079mpteq2dv 5240 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
8180eqeq2d 2735 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
8281, 2elrab2 3678 . . . . . . . . . . . . . . . . . . . 20 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
8382simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
844, 83syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
8584ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
86 elrabi 3669 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
8786, 2eleq2s 2843 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
884, 87syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
89 xp1st 8000 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
9088, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
91 xp1st 8000 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
9290, 91syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
93 elmapi 8839 . . . . . . . . . . . . . . . . . . . 20 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
9492, 93syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
95 fss 6724 . . . . . . . . . . . . . . . . . . 19 (((1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
9694, 52, 95sylancl 585 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
9796ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
98 xp2nd 8001 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
9990, 98syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
100 fvex 6894 . . . . . . . . . . . . . . . . . . . 20 (2nd ‘(1st𝑇)) ∈ V
101 f1oeq1 6811 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
102100, 101elab 3660 . . . . . . . . . . . . . . . . . . 19 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
10399, 102sylib 217 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
104103ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
105 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → (2nd𝑧) ∈ (1...(𝑁 − 1)))
106 xp2nd 8001 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd𝑇) ∈ (0...𝑁))
10788, 106syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2nd𝑇) ∈ (0...𝑁))
108107adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd𝑇) ∈ (0...𝑁))
109 eldifsn 4782 . . . . . . . . . . . . . . . . . . 19 ((2nd𝑇) ∈ ((0...𝑁) ∖ {(2nd𝑧)}) ↔ ((2nd𝑇) ∈ (0...𝑁) ∧ (2nd𝑇) ≠ (2nd𝑧)))
110109biimpri 227 . . . . . . . . . . . . . . . . . 18 (((2nd𝑇) ∈ (0...𝑁) ∧ (2nd𝑇) ≠ (2nd𝑧)) → (2nd𝑇) ∈ ((0...𝑁) ∖ {(2nd𝑧)}))
111108, 110sylan 579 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → (2nd𝑇) ∈ ((0...𝑁) ∖ {(2nd𝑧)}))
11265, 85, 97, 104, 105, 111poimirlem2 36980 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑧))‘𝑛))
113112ex 412 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → ((2nd𝑇) ≠ (2nd𝑧) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑧))‘𝑛)))
114113necon1bd 2950 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑧))‘𝑛) → (2nd𝑇) = (2nd𝑧)))
115114adantlr 712 . . . . . . . . . . . . 13 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑧))‘𝑛) → (2nd𝑇) = (2nd𝑧)))
11664, 115mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd𝑇) = (2nd𝑧))
117116neeq1d 2992 . . . . . . . . . . 11 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → ((2nd𝑇) ≠ 𝑁 ↔ (2nd𝑧) ≠ 𝑁))
118117exbiri 808 . . . . . . . . . 10 ((𝜑𝑧𝑆) → ((2nd𝑧) ∈ (1...(𝑁 − 1)) → ((2nd𝑧) ≠ 𝑁 → (2nd𝑇) ≠ 𝑁)))
11922, 118mpdd 43 . . . . . . . . 9 ((𝜑𝑧𝑆) → ((2nd𝑧) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ≠ 𝑁))
120119necon2bd 2948 . . . . . . . 8 ((𝜑𝑧𝑆) → ((2nd𝑇) = 𝑁 → ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))))
1218, 120mpd 15 . . . . . . 7 ((𝜑𝑧𝑆) → ¬ (2nd𝑧) ∈ (1...(𝑁 − 1)))
122 xp2nd 8001 . . . . . . . . 9 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd𝑧) ∈ (0...𝑁))
12344, 122syl 17 . . . . . . . 8 (𝑧𝑆 → (2nd𝑧) ∈ (0...𝑁))
124 nn0uz 12861 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
12512, 124eleqtrdi 2835 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 1) ∈ (ℤ‘0))
126 fzpred 13546 . . . . . . . . . . . . . . . . 17 ((𝑁 − 1) ∈ (ℤ‘0) → (0...(𝑁 − 1)) = ({0} ∪ ((0 + 1)...(𝑁 − 1))))
127125, 126syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (0...(𝑁 − 1)) = ({0} ∪ ((0 + 1)...(𝑁 − 1))))
128 0p1e1 12331 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
129128oveq1i 7411 . . . . . . . . . . . . . . . . 17 ((0 + 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
130129uneq2i 4152 . . . . . . . . . . . . . . . 16 ({0} ∪ ((0 + 1)...(𝑁 − 1))) = ({0} ∪ (1...(𝑁 − 1)))
131127, 130eqtrdi 2780 . . . . . . . . . . . . . . 15 (𝜑 → (0...(𝑁 − 1)) = ({0} ∪ (1...(𝑁 − 1))))
132131eleq2d 2811 . . . . . . . . . . . . . 14 (𝜑 → ((2nd𝑧) ∈ (0...(𝑁 − 1)) ↔ (2nd𝑧) ∈ ({0} ∪ (1...(𝑁 − 1)))))
133132notbid 318 . . . . . . . . . . . . 13 (𝜑 → (¬ (2nd𝑧) ∈ (0...(𝑁 − 1)) ↔ ¬ (2nd𝑧) ∈ ({0} ∪ (1...(𝑁 − 1)))))
134 ioran 980 . . . . . . . . . . . . . 14 (¬ ((2nd𝑧) = 0 ∨ (2nd𝑧) ∈ (1...(𝑁 − 1))) ↔ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))))
135 elun 4140 . . . . . . . . . . . . . . 15 ((2nd𝑧) ∈ ({0} ∪ (1...(𝑁 − 1))) ↔ ((2nd𝑧) ∈ {0} ∨ (2nd𝑧) ∈ (1...(𝑁 − 1))))
136 fvex 6894 . . . . . . . . . . . . . . . . 17 (2nd𝑧) ∈ V
137136elsn 4635 . . . . . . . . . . . . . . . 16 ((2nd𝑧) ∈ {0} ↔ (2nd𝑧) = 0)
138137orbi1i 910 . . . . . . . . . . . . . . 15 (((2nd𝑧) ∈ {0} ∨ (2nd𝑧) ∈ (1...(𝑁 − 1))) ↔ ((2nd𝑧) = 0 ∨ (2nd𝑧) ∈ (1...(𝑁 − 1))))
139135, 138bitri 275 . . . . . . . . . . . . . 14 ((2nd𝑧) ∈ ({0} ∪ (1...(𝑁 − 1))) ↔ ((2nd𝑧) = 0 ∨ (2nd𝑧) ∈ (1...(𝑁 − 1))))
140134, 139xchnxbir 333 . . . . . . . . . . . . 13 (¬ (2nd𝑧) ∈ ({0} ∪ (1...(𝑁 − 1))) ↔ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))))
141133, 140bitrdi 287 . . . . . . . . . . . 12 (𝜑 → (¬ (2nd𝑧) ∈ (0...(𝑁 − 1)) ↔ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1)))))
142141anbi2d 628 . . . . . . . . . . 11 (𝜑 → (((2nd𝑧) ∈ (0...𝑁) ∧ ¬ (2nd𝑧) ∈ (0...(𝑁 − 1))) ↔ ((2nd𝑧) ∈ (0...𝑁) ∧ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))))))
143 uncom 4145 . . . . . . . . . . . . . . . 16 ((0...(𝑁 − 1)) ∪ {𝑁}) = ({𝑁} ∪ (0...(𝑁 − 1)))
144143difeq1i 4110 . . . . . . . . . . . . . . 15 (((0...(𝑁 − 1)) ∪ {𝑁}) ∖ (0...(𝑁 − 1))) = (({𝑁} ∪ (0...(𝑁 − 1))) ∖ (0...(𝑁 − 1)))
145 difun2 4472 . . . . . . . . . . . . . . 15 (({𝑁} ∪ (0...(𝑁 − 1))) ∖ (0...(𝑁 − 1))) = ({𝑁} ∖ (0...(𝑁 − 1)))
146144, 145eqtri 2752 . . . . . . . . . . . . . 14 (((0...(𝑁 − 1)) ∪ {𝑁}) ∖ (0...(𝑁 − 1))) = ({𝑁} ∖ (0...(𝑁 − 1)))
1471nncnd 12225 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℂ)
148 npcan1 11636 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
149147, 148syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
1501nnnn0d 12529 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℕ0)
151150, 124eleqtrdi 2835 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℤ‘0))
152149, 151eqeltrd 2825 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘0))
15312nn0zd 12581 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 − 1) ∈ ℤ)
154 uzid 12834 . . . . . . . . . . . . . . . . . . 19 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
155 peano2uz 12882 . . . . . . . . . . . . . . . . . . 19 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
156153, 154, 1553syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
157149, 156eqeltrrd 2826 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
158 fzsplit2 13523 . . . . . . . . . . . . . . . . 17 ((((𝑁 − 1) + 1) ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (0...𝑁) = ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
159152, 157, 158syl2anc 583 . . . . . . . . . . . . . . . 16 (𝜑 → (0...𝑁) = ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
160149oveq1d 7416 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
1611nnzd 12582 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
162 fzsn 13540 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
163161, 162syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁...𝑁) = {𝑁})
164160, 163eqtrd 2764 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
165164uneq2d 4155 . . . . . . . . . . . . . . . 16 (𝜑 → ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((0...(𝑁 − 1)) ∪ {𝑁}))
166159, 165eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → (0...𝑁) = ((0...(𝑁 − 1)) ∪ {𝑁}))
167166difeq1d 4113 . . . . . . . . . . . . . 14 (𝜑 → ((0...𝑁) ∖ (0...(𝑁 − 1))) = (((0...(𝑁 − 1)) ∪ {𝑁}) ∖ (0...(𝑁 − 1))))
168 elfzle2 13502 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (0...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
16915, 168nsyl 140 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑁 ∈ (0...(𝑁 − 1)))
170 incom 4193 . . . . . . . . . . . . . . . . 17 ((0...(𝑁 − 1)) ∩ {𝑁}) = ({𝑁} ∩ (0...(𝑁 − 1)))
171170eqeq1i 2729 . . . . . . . . . . . . . . . 16 (((0...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ({𝑁} ∩ (0...(𝑁 − 1))) = ∅)
172 disjsn 4707 . . . . . . . . . . . . . . . 16 (((0...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (0...(𝑁 − 1)))
173 disj3 4445 . . . . . . . . . . . . . . . 16 (({𝑁} ∩ (0...(𝑁 − 1))) = ∅ ↔ {𝑁} = ({𝑁} ∖ (0...(𝑁 − 1))))
174171, 172, 1733bitr3i 301 . . . . . . . . . . . . . . 15 𝑁 ∈ (0...(𝑁 − 1)) ↔ {𝑁} = ({𝑁} ∖ (0...(𝑁 − 1))))
175169, 174sylib 217 . . . . . . . . . . . . . 14 (𝜑 → {𝑁} = ({𝑁} ∖ (0...(𝑁 − 1))))
176146, 167, 1753eqtr4a 2790 . . . . . . . . . . . . 13 (𝜑 → ((0...𝑁) ∖ (0...(𝑁 − 1))) = {𝑁})
177176eleq2d 2811 . . . . . . . . . . . 12 (𝜑 → ((2nd𝑧) ∈ ((0...𝑁) ∖ (0...(𝑁 − 1))) ↔ (2nd𝑧) ∈ {𝑁}))
178 eldif 3950 . . . . . . . . . . . 12 ((2nd𝑧) ∈ ((0...𝑁) ∖ (0...(𝑁 − 1))) ↔ ((2nd𝑧) ∈ (0...𝑁) ∧ ¬ (2nd𝑧) ∈ (0...(𝑁 − 1))))
179136elsn 4635 . . . . . . . . . . . 12 ((2nd𝑧) ∈ {𝑁} ↔ (2nd𝑧) = 𝑁)
180177, 178, 1793bitr3g 313 . . . . . . . . . . 11 (𝜑 → (((2nd𝑧) ∈ (0...𝑁) ∧ ¬ (2nd𝑧) ∈ (0...(𝑁 − 1))) ↔ (2nd𝑧) = 𝑁))
181142, 180bitr3d 281 . . . . . . . . . 10 (𝜑 → (((2nd𝑧) ∈ (0...𝑁) ∧ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1)))) ↔ (2nd𝑧) = 𝑁))
182181biimpd 228 . . . . . . . . 9 (𝜑 → (((2nd𝑧) ∈ (0...𝑁) ∧ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1)))) → (2nd𝑧) = 𝑁))
183182expdimp 452 . . . . . . . 8 ((𝜑 ∧ (2nd𝑧) ∈ (0...𝑁)) → ((¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd𝑧) = 𝑁))
184123, 183sylan2 592 . . . . . . 7 ((𝜑𝑧𝑆) → ((¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd𝑧) = 𝑁))
185121, 184mpan2d 691 . . . . . 6 ((𝜑𝑧𝑆) → (¬ (2nd𝑧) = 0 → (2nd𝑧) = 𝑁))
1861, 2, 3poimirlem14 36992 . . . . . . . . . 10 (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 𝑁)
187 fveqeq2 6890 . . . . . . . . . . 11 (𝑧 = 𝑠 → ((2nd𝑧) = 𝑁 ↔ (2nd𝑠) = 𝑁))
188187rmo4 3718 . . . . . . . . . 10 (∃*𝑧𝑆 (2nd𝑧) = 𝑁 ↔ ∀𝑧𝑆𝑠𝑆 (((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) → 𝑧 = 𝑠))
189186, 188sylib 217 . . . . . . . . 9 (𝜑 → ∀𝑧𝑆𝑠𝑆 (((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) → 𝑧 = 𝑠))
190189r19.21bi 3240 . . . . . . . 8 ((𝜑𝑧𝑆) → ∀𝑠𝑆 (((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) → 𝑧 = 𝑠))
1914adantr 480 . . . . . . . 8 ((𝜑𝑧𝑆) → 𝑇𝑆)
192 fveqeq2 6890 . . . . . . . . . . 11 (𝑠 = 𝑇 → ((2nd𝑠) = 𝑁 ↔ (2nd𝑇) = 𝑁))
193192anbi2d 628 . . . . . . . . . 10 (𝑠 = 𝑇 → (((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) ↔ ((2nd𝑧) = 𝑁 ∧ (2nd𝑇) = 𝑁)))
194 eqeq2 2736 . . . . . . . . . 10 (𝑠 = 𝑇 → (𝑧 = 𝑠𝑧 = 𝑇))
195193, 194imbi12d 344 . . . . . . . . 9 (𝑠 = 𝑇 → ((((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) → 𝑧 = 𝑠) ↔ (((2nd𝑧) = 𝑁 ∧ (2nd𝑇) = 𝑁) → 𝑧 = 𝑇)))
196195rspccv 3601 . . . . . . . 8 (∀𝑠𝑆 (((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) → 𝑧 = 𝑠) → (𝑇𝑆 → (((2nd𝑧) = 𝑁 ∧ (2nd𝑇) = 𝑁) → 𝑧 = 𝑇)))
197190, 191, 196sylc 65 . . . . . . 7 ((𝜑𝑧𝑆) → (((2nd𝑧) = 𝑁 ∧ (2nd𝑇) = 𝑁) → 𝑧 = 𝑇))
1988, 197mpan2d 691 . . . . . 6 ((𝜑𝑧𝑆) → ((2nd𝑧) = 𝑁𝑧 = 𝑇))
199185, 198syld 47 . . . . 5 ((𝜑𝑧𝑆) → (¬ (2nd𝑧) = 0 → 𝑧 = 𝑇))
200199necon1ad 2949 . . . 4 ((𝜑𝑧𝑆) → (𝑧𝑇 → (2nd𝑧) = 0))
201200ralrimiva 3138 . . 3 (𝜑 → ∀𝑧𝑆 (𝑧𝑇 → (2nd𝑧) = 0))
2021, 2, 3poimirlem13 36991 . . 3 (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 0)
203 rmoim 3728 . . 3 (∀𝑧𝑆 (𝑧𝑇 → (2nd𝑧) = 0) → (∃*𝑧𝑆 (2nd𝑧) = 0 → ∃*𝑧𝑆 𝑧𝑇))
204201, 202, 203sylc 65 . 2 (𝜑 → ∃*𝑧𝑆 𝑧𝑇)
205 reu5 3370 . 2 (∃!𝑧𝑆 𝑧𝑇 ↔ (∃𝑧𝑆 𝑧𝑇 ∧ ∃*𝑧𝑆 𝑧𝑇))
2067, 204, 205sylanbrc 582 1 (𝜑 → ∃!𝑧𝑆 𝑧𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1533  wcel 2098  {cab 2701  wne 2932  wral 3053  wrex 3062  ∃!wreu 3366  ∃*wrmo 3367  {crab 3424  csb 3885  cdif 3937  cun 3938  cin 3939  wss 3940  c0 4314  ifcif 4520  {csn 4620   class class class wbr 5138  cmpt 5221   × cxp 5664  ran crn 5667  cima 5669  wf 6529  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  f cof 7661  1st c1st 7966  2nd c2nd 7967  m cmap 8816  cc 11104  0cc0 11106  1c1 11107   + caddc 11109   < clt 11245  cle 11246  cmin 11441  cn 12209  0cn0 12469  cz 12555  cuz 12819  ...cfz 13481  ..^cfzo 13624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-fzo 13625
This theorem is referenced by:  poimirlem22  37000
  Copyright terms: Public domain W3C validator