Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem21 Structured version   Visualization version   GIF version

Theorem poimirlem21 35492
Description: Lemma for poimir 35504 stating that, given a face not on a back face of the cube and a simplex in which it's opposite the final point of the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
poimirlem22.2 (𝜑𝑇𝑆)
poimirlem22.3 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
poimirlem21.4 (𝜑 → (2nd𝑇) = 𝑁)
Assertion
Ref Expression
poimirlem21 (𝜑 → ∃!𝑧𝑆 𝑧𝑇)
Distinct variable groups:   𝑓,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧   𝜑,𝑗,𝑛,𝑦   𝑗,𝐹,𝑛,𝑦   𝑗,𝑁,𝑛,𝑦   𝑇,𝑗,𝑛,𝑦   𝜑,𝑝,𝑡   𝑓,𝐾,𝑗,𝑛,𝑝,𝑡   𝑓,𝑁,𝑝,𝑡   𝑇,𝑓,𝑝   𝜑,𝑧   𝑓,𝐹,𝑝,𝑡,𝑧   𝑧,𝐾   𝑧,𝑁   𝑡,𝑇,𝑧   𝑆,𝑗,𝑛,𝑝,𝑡,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem21
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . 3 (𝜑𝑁 ∈ ℕ)
2 poimirlem22.s . . 3 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
3 poimirlem22.1 . . 3 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁)))
4 poimirlem22.2 . . 3 (𝜑𝑇𝑆)
5 poimirlem22.3 . . 3 ((𝜑𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝𝑛) ≠ 0)
6 poimirlem21.4 . . 3 (𝜑 → (2nd𝑇) = 𝑁)
71, 2, 3, 4, 5, 6poimirlem20 35491 . 2 (𝜑 → ∃𝑧𝑆 𝑧𝑇)
86adantr 484 . . . . . . . 8 ((𝜑𝑧𝑆) → (2nd𝑇) = 𝑁)
91nnred 11828 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
109ltm1d 11747 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁 − 1) < 𝑁)
11 nnm1nn0 12114 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
121, 11syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 1) ∈ ℕ0)
1312nn0red 12134 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑁 − 1) ∈ ℝ)
1413, 9ltnled 10962 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1)))
1510, 14mpbid 235 . . . . . . . . . . . . . 14 (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1))
16 elfzle2 13099 . . . . . . . . . . . . . 14 (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
1715, 16nsyl 142 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1)))
18 eleq1 2821 . . . . . . . . . . . . . 14 ((2nd𝑧) = 𝑁 → ((2nd𝑧) ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1))))
1918notbid 321 . . . . . . . . . . . . 13 ((2nd𝑧) = 𝑁 → (¬ (2nd𝑧) ∈ (1...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1))))
2017, 19syl5ibrcom 250 . . . . . . . . . . . 12 (𝜑 → ((2nd𝑧) = 𝑁 → ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))))
2120necon2ad 2950 . . . . . . . . . . 11 (𝜑 → ((2nd𝑧) ∈ (1...(𝑁 − 1)) → (2nd𝑧) ≠ 𝑁))
2221adantr 484 . . . . . . . . . 10 ((𝜑𝑧𝑆) → ((2nd𝑧) ∈ (1...(𝑁 − 1)) → (2nd𝑧) ≠ 𝑁))
231ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ)
24 fveq2 6706 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑧 → (2nd𝑡) = (2nd𝑧))
2524breq2d 5055 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑧 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑧)))
2625ifbid 4452 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑧 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)))
2726csbeq1d 3806 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑧if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
28 2fveq3 6711 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑧 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑧)))
29 2fveq3 6711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑧 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑧)))
3029imaeq1d 5917 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑧 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑧)) “ (1...𝑗)))
3130xpeq1d 5569 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑧 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}))
3229imaeq1d 5917 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑧 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)))
3332xpeq1d 5569 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑧 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))
3431, 33uneq12d 4068 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑧 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))
3528, 34oveq12d 7220 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑧 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))
3635csbeq2dv 3809 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑧if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))
3727, 36eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑧if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))
3837mpteq2dv 5140 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑧 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))
3938eqeq2d 2745 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑧 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
4039, 2elrab2 3598 . . . . . . . . . . . . . . . 16 (𝑧𝑆 ↔ (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
4140simprbi 500 . . . . . . . . . . . . . . 15 (𝑧𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))
4241ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑧), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑧)) ∘f + ((((2nd ‘(1st𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))
43 elrabi 3589 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
4443, 2eleq2s 2852 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑆𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
45 xp1st 7782 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
4644, 45syl 17 . . . . . . . . . . . . . . . . . 18 (𝑧𝑆 → (1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
47 xp1st 7782 . . . . . . . . . . . . . . . . . 18 ((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
4846, 47syl 17 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 → (1st ‘(1st𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
49 elmapi 8519 . . . . . . . . . . . . . . . . 17 ((1st ‘(1st𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑧)):(1...𝑁)⟶(0..^𝐾))
5048, 49syl 17 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → (1st ‘(1st𝑧)):(1...𝑁)⟶(0..^𝐾))
51 elfzoelz 13226 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0..^𝐾) → 𝑛 ∈ ℤ)
5251ssriv 3895 . . . . . . . . . . . . . . . 16 (0..^𝐾) ⊆ ℤ
53 fss 6551 . . . . . . . . . . . . . . . 16 (((1st ‘(1st𝑧)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st ‘(1st𝑧)):(1...𝑁)⟶ℤ)
5450, 52, 53sylancl 589 . . . . . . . . . . . . . . 15 (𝑧𝑆 → (1st ‘(1st𝑧)):(1...𝑁)⟶ℤ)
5554ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (1st ‘(1st𝑧)):(1...𝑁)⟶ℤ)
56 xp2nd 7783 . . . . . . . . . . . . . . . . 17 ((1st𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
5746, 56syl 17 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → (2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
58 fvex 6719 . . . . . . . . . . . . . . . . 17 (2nd ‘(1st𝑧)) ∈ V
59 f1oeq1 6638 . . . . . . . . . . . . . . . . 17 (𝑓 = (2nd ‘(1st𝑧)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)))
6058, 59elab 3580 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑧)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
6157, 60sylib 221 . . . . . . . . . . . . . . 15 (𝑧𝑆 → (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
6261ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd ‘(1st𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))
63 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd𝑧) ∈ (1...(𝑁 − 1)))
6423, 42, 55, 62, 63poimirlem1 35472 . . . . . . . . . . . . 13 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑧))‘𝑛))
651ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → 𝑁 ∈ ℕ)
66 fveq2 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
6766breq2d 5055 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
6867ifbid 4452 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
6968csbeq1d 3806 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
70 2fveq3 6711 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
71 2fveq3 6711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
7271imaeq1d 5917 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
7372xpeq1d 5569 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
7471imaeq1d 5917 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
7574xpeq1d 5569 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
7673, 75uneq12d 4068 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
7770, 76oveq12d 7220 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
7877csbeq2dv 3809 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
7969, 78eqtrd 2774 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
8079mpteq2dv 5140 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
8180eqeq2d 2745 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
8281, 2elrab2 3598 . . . . . . . . . . . . . . . . . . . 20 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
8382simprbi 500 . . . . . . . . . . . . . . . . . . 19 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
844, 83syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
8584ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘f + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
86 elrabi 3589 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘f + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
8786, 2eleq2s 2852 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
884, 87syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
89 xp1st 7782 . . . . . . . . . . . . . . . . . . . . . 22 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
9088, 89syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
91 xp1st 7782 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
9290, 91syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)))
93 elmapi 8519 . . . . . . . . . . . . . . . . . . . 20 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
9492, 93syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
95 fss 6551 . . . . . . . . . . . . . . . . . . 19 (((1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
9694, 52, 95sylancl 589 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
9796ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → (1st ‘(1st𝑇)):(1...𝑁)⟶ℤ)
98 xp2nd 7783 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
9990, 98syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
100 fvex 6719 . . . . . . . . . . . . . . . . . . . 20 (2nd ‘(1st𝑇)) ∈ V
101 f1oeq1 6638 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
102100, 101elab 3580 . . . . . . . . . . . . . . . . . . 19 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
10399, 102sylib 221 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
104103ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
105 simplr 769 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → (2nd𝑧) ∈ (1...(𝑁 − 1)))
106 xp2nd 7783 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd𝑇) ∈ (0...𝑁))
10788, 106syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (2nd𝑇) ∈ (0...𝑁))
108107adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd𝑇) ∈ (0...𝑁))
109 eldifsn 4690 . . . . . . . . . . . . . . . . . . 19 ((2nd𝑇) ∈ ((0...𝑁) ∖ {(2nd𝑧)}) ↔ ((2nd𝑇) ∈ (0...𝑁) ∧ (2nd𝑇) ≠ (2nd𝑧)))
110109biimpri 231 . . . . . . . . . . . . . . . . . 18 (((2nd𝑇) ∈ (0...𝑁) ∧ (2nd𝑇) ≠ (2nd𝑧)) → (2nd𝑇) ∈ ((0...𝑁) ∖ {(2nd𝑧)}))
111108, 110sylan 583 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → (2nd𝑇) ∈ ((0...𝑁) ∖ {(2nd𝑧)}))
11265, 85, 97, 104, 105, 111poimirlem2 35473 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) ∧ (2nd𝑇) ≠ (2nd𝑧)) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑧))‘𝑛))
113112ex 416 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → ((2nd𝑇) ≠ (2nd𝑧) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑧))‘𝑛)))
114113necon1bd 2953 . . . . . . . . . . . . . 14 ((𝜑 ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑧))‘𝑛) → (2nd𝑇) = (2nd𝑧)))
115114adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd𝑧))‘𝑛) → (2nd𝑇) = (2nd𝑧)))
11664, 115mpd 15 . . . . . . . . . . . 12 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd𝑇) = (2nd𝑧))
117116neeq1d 2994 . . . . . . . . . . 11 (((𝜑𝑧𝑆) ∧ (2nd𝑧) ∈ (1...(𝑁 − 1))) → ((2nd𝑇) ≠ 𝑁 ↔ (2nd𝑧) ≠ 𝑁))
118117exbiri 811 . . . . . . . . . 10 ((𝜑𝑧𝑆) → ((2nd𝑧) ∈ (1...(𝑁 − 1)) → ((2nd𝑧) ≠ 𝑁 → (2nd𝑇) ≠ 𝑁)))
11922, 118mpdd 43 . . . . . . . . 9 ((𝜑𝑧𝑆) → ((2nd𝑧) ∈ (1...(𝑁 − 1)) → (2nd𝑇) ≠ 𝑁))
120119necon2bd 2951 . . . . . . . 8 ((𝜑𝑧𝑆) → ((2nd𝑇) = 𝑁 → ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))))
1218, 120mpd 15 . . . . . . 7 ((𝜑𝑧𝑆) → ¬ (2nd𝑧) ∈ (1...(𝑁 − 1)))
122 xp2nd 7783 . . . . . . . . 9 (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd𝑧) ∈ (0...𝑁))
12344, 122syl 17 . . . . . . . 8 (𝑧𝑆 → (2nd𝑧) ∈ (0...𝑁))
124 nn0uz 12459 . . . . . . . . . . . . . . . . . 18 0 = (ℤ‘0)
12512, 124eleqtrdi 2844 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑁 − 1) ∈ (ℤ‘0))
126 fzpred 13143 . . . . . . . . . . . . . . . . 17 ((𝑁 − 1) ∈ (ℤ‘0) → (0...(𝑁 − 1)) = ({0} ∪ ((0 + 1)...(𝑁 − 1))))
127125, 126syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (0...(𝑁 − 1)) = ({0} ∪ ((0 + 1)...(𝑁 − 1))))
128 0p1e1 11935 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
129128oveq1i 7212 . . . . . . . . . . . . . . . . 17 ((0 + 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
130129uneq2i 4064 . . . . . . . . . . . . . . . 16 ({0} ∪ ((0 + 1)...(𝑁 − 1))) = ({0} ∪ (1...(𝑁 − 1)))
131127, 130eqtrdi 2790 . . . . . . . . . . . . . . 15 (𝜑 → (0...(𝑁 − 1)) = ({0} ∪ (1...(𝑁 − 1))))
132131eleq2d 2819 . . . . . . . . . . . . . 14 (𝜑 → ((2nd𝑧) ∈ (0...(𝑁 − 1)) ↔ (2nd𝑧) ∈ ({0} ∪ (1...(𝑁 − 1)))))
133132notbid 321 . . . . . . . . . . . . 13 (𝜑 → (¬ (2nd𝑧) ∈ (0...(𝑁 − 1)) ↔ ¬ (2nd𝑧) ∈ ({0} ∪ (1...(𝑁 − 1)))))
134 ioran 984 . . . . . . . . . . . . . 14 (¬ ((2nd𝑧) = 0 ∨ (2nd𝑧) ∈ (1...(𝑁 − 1))) ↔ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))))
135 elun 4053 . . . . . . . . . . . . . . 15 ((2nd𝑧) ∈ ({0} ∪ (1...(𝑁 − 1))) ↔ ((2nd𝑧) ∈ {0} ∨ (2nd𝑧) ∈ (1...(𝑁 − 1))))
136 fvex 6719 . . . . . . . . . . . . . . . . 17 (2nd𝑧) ∈ V
137136elsn 4546 . . . . . . . . . . . . . . . 16 ((2nd𝑧) ∈ {0} ↔ (2nd𝑧) = 0)
138137orbi1i 914 . . . . . . . . . . . . . . 15 (((2nd𝑧) ∈ {0} ∨ (2nd𝑧) ∈ (1...(𝑁 − 1))) ↔ ((2nd𝑧) = 0 ∨ (2nd𝑧) ∈ (1...(𝑁 − 1))))
139135, 138bitri 278 . . . . . . . . . . . . . 14 ((2nd𝑧) ∈ ({0} ∪ (1...(𝑁 − 1))) ↔ ((2nd𝑧) = 0 ∨ (2nd𝑧) ∈ (1...(𝑁 − 1))))
140134, 139xchnxbir 336 . . . . . . . . . . . . 13 (¬ (2nd𝑧) ∈ ({0} ∪ (1...(𝑁 − 1))) ↔ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))))
141133, 140bitrdi 290 . . . . . . . . . . . 12 (𝜑 → (¬ (2nd𝑧) ∈ (0...(𝑁 − 1)) ↔ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1)))))
142141anbi2d 632 . . . . . . . . . . 11 (𝜑 → (((2nd𝑧) ∈ (0...𝑁) ∧ ¬ (2nd𝑧) ∈ (0...(𝑁 − 1))) ↔ ((2nd𝑧) ∈ (0...𝑁) ∧ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))))))
143 uncom 4057 . . . . . . . . . . . . . . . 16 ((0...(𝑁 − 1)) ∪ {𝑁}) = ({𝑁} ∪ (0...(𝑁 − 1)))
144143difeq1i 4023 . . . . . . . . . . . . . . 15 (((0...(𝑁 − 1)) ∪ {𝑁}) ∖ (0...(𝑁 − 1))) = (({𝑁} ∪ (0...(𝑁 − 1))) ∖ (0...(𝑁 − 1)))
145 difun2 4385 . . . . . . . . . . . . . . 15 (({𝑁} ∪ (0...(𝑁 − 1))) ∖ (0...(𝑁 − 1))) = ({𝑁} ∖ (0...(𝑁 − 1)))
146144, 145eqtri 2762 . . . . . . . . . . . . . 14 (((0...(𝑁 − 1)) ∪ {𝑁}) ∖ (0...(𝑁 − 1))) = ({𝑁} ∖ (0...(𝑁 − 1)))
1471nncnd 11829 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℂ)
148 npcan1 11240 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
149147, 148syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
1501nnnn0d 12133 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℕ0)
151150, 124eleqtrdi 2844 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ (ℤ‘0))
152149, 151eqeltrd 2834 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘0))
15312nn0zd 12263 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑁 − 1) ∈ ℤ)
154 uzid 12436 . . . . . . . . . . . . . . . . . . 19 ((𝑁 − 1) ∈ ℤ → (𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)))
155 peano2uz 12480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 − 1) ∈ (ℤ‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
156153, 154, 1553syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑁 − 1) + 1) ∈ (ℤ‘(𝑁 − 1)))
157149, 156eqeltrrd 2835 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ (ℤ‘(𝑁 − 1)))
158 fzsplit2 13120 . . . . . . . . . . . . . . . . 17 ((((𝑁 − 1) + 1) ∈ (ℤ‘0) ∧ 𝑁 ∈ (ℤ‘(𝑁 − 1))) → (0...𝑁) = ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
159152, 157, 158syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → (0...𝑁) = ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)))
160149oveq1d 7217 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁))
1611nnzd 12264 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
162 fzsn 13137 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁})
163161, 162syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑁...𝑁) = {𝑁})
164160, 163eqtrd 2774 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁})
165164uneq2d 4067 . . . . . . . . . . . . . . . 16 (𝜑 → ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((0...(𝑁 − 1)) ∪ {𝑁}))
166159, 165eqtrd 2774 . . . . . . . . . . . . . . 15 (𝜑 → (0...𝑁) = ((0...(𝑁 − 1)) ∪ {𝑁}))
167166difeq1d 4026 . . . . . . . . . . . . . 14 (𝜑 → ((0...𝑁) ∖ (0...(𝑁 − 1))) = (((0...(𝑁 − 1)) ∪ {𝑁}) ∖ (0...(𝑁 − 1))))
168 elfzle2 13099 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (0...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1))
16915, 168nsyl 142 . . . . . . . . . . . . . . 15 (𝜑 → ¬ 𝑁 ∈ (0...(𝑁 − 1)))
170 incom 4105 . . . . . . . . . . . . . . . . 17 ((0...(𝑁 − 1)) ∩ {𝑁}) = ({𝑁} ∩ (0...(𝑁 − 1)))
171170eqeq1i 2739 . . . . . . . . . . . . . . . 16 (((0...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ({𝑁} ∩ (0...(𝑁 − 1))) = ∅)
172 disjsn 4617 . . . . . . . . . . . . . . . 16 (((0...(𝑁 − 1)) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ (0...(𝑁 − 1)))
173 disj3 4358 . . . . . . . . . . . . . . . 16 (({𝑁} ∩ (0...(𝑁 − 1))) = ∅ ↔ {𝑁} = ({𝑁} ∖ (0...(𝑁 − 1))))
174171, 172, 1733bitr3i 304 . . . . . . . . . . . . . . 15 𝑁 ∈ (0...(𝑁 − 1)) ↔ {𝑁} = ({𝑁} ∖ (0...(𝑁 − 1))))
175169, 174sylib 221 . . . . . . . . . . . . . 14 (𝜑 → {𝑁} = ({𝑁} ∖ (0...(𝑁 − 1))))
176146, 167, 1753eqtr4a 2800 . . . . . . . . . . . . 13 (𝜑 → ((0...𝑁) ∖ (0...(𝑁 − 1))) = {𝑁})
177176eleq2d 2819 . . . . . . . . . . . 12 (𝜑 → ((2nd𝑧) ∈ ((0...𝑁) ∖ (0...(𝑁 − 1))) ↔ (2nd𝑧) ∈ {𝑁}))
178 eldif 3867 . . . . . . . . . . . 12 ((2nd𝑧) ∈ ((0...𝑁) ∖ (0...(𝑁 − 1))) ↔ ((2nd𝑧) ∈ (0...𝑁) ∧ ¬ (2nd𝑧) ∈ (0...(𝑁 − 1))))
179136elsn 4546 . . . . . . . . . . . 12 ((2nd𝑧) ∈ {𝑁} ↔ (2nd𝑧) = 𝑁)
180177, 178, 1793bitr3g 316 . . . . . . . . . . 11 (𝜑 → (((2nd𝑧) ∈ (0...𝑁) ∧ ¬ (2nd𝑧) ∈ (0...(𝑁 − 1))) ↔ (2nd𝑧) = 𝑁))
181142, 180bitr3d 284 . . . . . . . . . 10 (𝜑 → (((2nd𝑧) ∈ (0...𝑁) ∧ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1)))) ↔ (2nd𝑧) = 𝑁))
182181biimpd 232 . . . . . . . . 9 (𝜑 → (((2nd𝑧) ∈ (0...𝑁) ∧ (¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1)))) → (2nd𝑧) = 𝑁))
183182expdimp 456 . . . . . . . 8 ((𝜑 ∧ (2nd𝑧) ∈ (0...𝑁)) → ((¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd𝑧) = 𝑁))
184123, 183sylan2 596 . . . . . . 7 ((𝜑𝑧𝑆) → ((¬ (2nd𝑧) = 0 ∧ ¬ (2nd𝑧) ∈ (1...(𝑁 − 1))) → (2nd𝑧) = 𝑁))
185121, 184mpan2d 694 . . . . . 6 ((𝜑𝑧𝑆) → (¬ (2nd𝑧) = 0 → (2nd𝑧) = 𝑁))
1861, 2, 3poimirlem14 35485 . . . . . . . . . 10 (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 𝑁)
187 fveqeq2 6715 . . . . . . . . . . 11 (𝑧 = 𝑠 → ((2nd𝑧) = 𝑁 ↔ (2nd𝑠) = 𝑁))
188187rmo4 3636 . . . . . . . . . 10 (∃*𝑧𝑆 (2nd𝑧) = 𝑁 ↔ ∀𝑧𝑆𝑠𝑆 (((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) → 𝑧 = 𝑠))
189186, 188sylib 221 . . . . . . . . 9 (𝜑 → ∀𝑧𝑆𝑠𝑆 (((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) → 𝑧 = 𝑠))
190189r19.21bi 3123 . . . . . . . 8 ((𝜑𝑧𝑆) → ∀𝑠𝑆 (((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) → 𝑧 = 𝑠))
1914adantr 484 . . . . . . . 8 ((𝜑𝑧𝑆) → 𝑇𝑆)
192 fveqeq2 6715 . . . . . . . . . . 11 (𝑠 = 𝑇 → ((2nd𝑠) = 𝑁 ↔ (2nd𝑇) = 𝑁))
193192anbi2d 632 . . . . . . . . . 10 (𝑠 = 𝑇 → (((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) ↔ ((2nd𝑧) = 𝑁 ∧ (2nd𝑇) = 𝑁)))
194 eqeq2 2746 . . . . . . . . . 10 (𝑠 = 𝑇 → (𝑧 = 𝑠𝑧 = 𝑇))
195193, 194imbi12d 348 . . . . . . . . 9 (𝑠 = 𝑇 → ((((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) → 𝑧 = 𝑠) ↔ (((2nd𝑧) = 𝑁 ∧ (2nd𝑇) = 𝑁) → 𝑧 = 𝑇)))
196195rspccv 3527 . . . . . . . 8 (∀𝑠𝑆 (((2nd𝑧) = 𝑁 ∧ (2nd𝑠) = 𝑁) → 𝑧 = 𝑠) → (𝑇𝑆 → (((2nd𝑧) = 𝑁 ∧ (2nd𝑇) = 𝑁) → 𝑧 = 𝑇)))
197190, 191, 196sylc 65 . . . . . . 7 ((𝜑𝑧𝑆) → (((2nd𝑧) = 𝑁 ∧ (2nd𝑇) = 𝑁) → 𝑧 = 𝑇))
1988, 197mpan2d 694 . . . . . 6 ((𝜑𝑧𝑆) → ((2nd𝑧) = 𝑁𝑧 = 𝑇))
199185, 198syld 47 . . . . 5 ((𝜑𝑧𝑆) → (¬ (2nd𝑧) = 0 → 𝑧 = 𝑇))
200199necon1ad 2952 . . . 4 ((𝜑𝑧𝑆) → (𝑧𝑇 → (2nd𝑧) = 0))
201200ralrimiva 3098 . . 3 (𝜑 → ∀𝑧𝑆 (𝑧𝑇 → (2nd𝑧) = 0))
2021, 2, 3poimirlem13 35484 . . 3 (𝜑 → ∃*𝑧𝑆 (2nd𝑧) = 0)
203 rmoim 3646 . . 3 (∀𝑧𝑆 (𝑧𝑇 → (2nd𝑧) = 0) → (∃*𝑧𝑆 (2nd𝑧) = 0 → ∃*𝑧𝑆 𝑧𝑇))
204201, 202, 203sylc 65 . 2 (𝜑 → ∃*𝑧𝑆 𝑧𝑇)
205 reu5 3330 . 2 (∃!𝑧𝑆 𝑧𝑇 ↔ (∃𝑧𝑆 𝑧𝑇 ∧ ∃*𝑧𝑆 𝑧𝑇))
2067, 204, 205sylanbrc 586 1 (𝜑 → ∃!𝑧𝑆 𝑧𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  {cab 2712  wne 2935  wral 3054  wrex 3055  ∃!wreu 3056  ∃*wrmo 3057  {crab 3058  csb 3802  cdif 3854  cun 3855  cin 3856  wss 3857  c0 4227  ifcif 4429  {csn 4531   class class class wbr 5043  cmpt 5124   × cxp 5538  ran crn 5541  cima 5543  wf 6365  1-1-ontowf1o 6368  cfv 6369  (class class class)co 7202  f cof 7456  1st c1st 7748  2nd c2nd 7749  m cmap 8497  cc 10710  0cc0 10712  1c1 10713   + caddc 10715   < clt 10850  cle 10851  cmin 11045  cn 11813  0cn0 12073  cz 12159  cuz 12421  ...cfz 13078  ..^cfzo 13221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222
This theorem is referenced by:  poimirlem22  35493
  Copyright terms: Public domain W3C validator