Step | Hyp | Ref
| Expression |
1 | | poimir.0 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | poimirlem22.s |
. . 3
⊢ 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} |
3 | | poimirlem22.1 |
. . 3
⊢ (𝜑 → 𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑m (1...𝑁))) |
4 | | poimirlem22.2 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝑆) |
5 | | poimirlem22.3 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → ∃𝑝 ∈ ran 𝐹(𝑝‘𝑛) ≠ 0) |
6 | | poimirlem21.4 |
. . 3
⊢ (𝜑 → (2nd
‘𝑇) = 𝑁) |
7 | 1, 2, 3, 4, 5, 6 | poimirlem20 35797 |
. 2
⊢ (𝜑 → ∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
8 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (2nd ‘𝑇) = 𝑁) |
9 | 1 | nnred 11988 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ ℝ) |
10 | 9 | ltm1d 11907 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 − 1) < 𝑁) |
11 | | nnm1nn0 12274 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
12 | 1, 11 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑁 − 1) ∈
ℕ0) |
13 | 12 | nn0red 12294 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 − 1) ∈ ℝ) |
14 | 13, 9 | ltnled 11122 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑁 − 1) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁 − 1))) |
15 | 10, 14 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬ 𝑁 ≤ (𝑁 − 1)) |
16 | | elfzle2 13260 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (1...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
17 | 15, 16 | nsyl 140 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝑁 ∈ (1...(𝑁 − 1))) |
18 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢
((2nd ‘𝑧) = 𝑁 → ((2nd ‘𝑧) ∈ (1...(𝑁 − 1)) ↔ 𝑁 ∈ (1...(𝑁 − 1)))) |
19 | 18 | notbid 318 |
. . . . . . . . . . . . 13
⊢
((2nd ‘𝑧) = 𝑁 → (¬ (2nd ‘𝑧) ∈ (1...(𝑁 − 1)) ↔ ¬ 𝑁 ∈ (1...(𝑁 − 1)))) |
20 | 17, 19 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2nd
‘𝑧) = 𝑁 → ¬ (2nd
‘𝑧) ∈
(1...(𝑁 −
1)))) |
21 | 20 | necon2ad 2958 |
. . . . . . . . . . 11
⊢ (𝜑 → ((2nd
‘𝑧) ∈
(1...(𝑁 − 1)) →
(2nd ‘𝑧)
≠ 𝑁)) |
22 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((2nd ‘𝑧) ∈ (1...(𝑁 − 1)) → (2nd
‘𝑧) ≠ 𝑁)) |
23 | 1 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ) |
24 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑧 → (2nd ‘𝑡) = (2nd ‘𝑧)) |
25 | 24 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑧 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑧))) |
26 | 25 | ifbid 4482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑧 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑧), 𝑦, (𝑦 + 1))) |
27 | 26 | csbeq1d 3836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑧 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
28 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑧 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑧))) |
29 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑧 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑧))) |
30 | 29 | imaeq1d 5968 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑧 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑧)) “
(1...𝑗))) |
31 | 30 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑧 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1})) |
32 | 29 | imaeq1d 5968 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑧 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑧)) “ ((𝑗 + 1)...𝑁))) |
33 | 32 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑧 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})) |
34 | 31, 33 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑧 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
35 | 28, 34 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑧 → ((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑧)) ∘f + ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
36 | 35 | csbeq2dv 3839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 = 𝑧 → ⦋if(𝑦 < (2nd ‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘f + ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
37 | 27, 36 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 = 𝑧 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘f + ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
38 | 37 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑧 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘f + ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
39 | 38 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑧 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘f + ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
40 | 39, 2 | elrab2 3627 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑆 ↔ (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘f + ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
41 | 40 | simprbi 497 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘f + ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
42 | 41 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑧), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑧)) ∘f + ((((2nd
‘(1st ‘𝑧)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑧)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
43 | | elrabi 3618 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
44 | 43, 2 | eleq2s 2857 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
45 | | xp1st 7863 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑆 → (1st ‘𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
47 | | xp1st 7863 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝑆 → (1st
‘(1st ‘𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
49 | | elmapi 8637 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘(1st ‘𝑧)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st
‘(1st ‘𝑧)):(1...𝑁)⟶(0..^𝐾)) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑆 → (1st
‘(1st ‘𝑧)):(1...𝑁)⟶(0..^𝐾)) |
51 | | elfzoelz 13387 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (0..^𝐾) → 𝑛 ∈ ℤ) |
52 | 51 | ssriv 3925 |
. . . . . . . . . . . . . . . 16
⊢
(0..^𝐾) ⊆
ℤ |
53 | | fss 6617 |
. . . . . . . . . . . . . . . 16
⊢
(((1st ‘(1st ‘𝑧)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st
‘(1st ‘𝑧)):(1...𝑁)⟶ℤ) |
54 | 50, 52, 53 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑆 → (1st
‘(1st ‘𝑧)):(1...𝑁)⟶ℤ) |
55 | 54 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → (1st
‘(1st ‘𝑧)):(1...𝑁)⟶ℤ) |
56 | | xp2nd 7864 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑧) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑧)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
57 | 46, 56 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝑆 → (2nd
‘(1st ‘𝑧)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
58 | | fvex 6787 |
. . . . . . . . . . . . . . . . 17
⊢
(2nd ‘(1st ‘𝑧)) ∈ V |
59 | | f1oeq1 6704 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = (2nd
‘(1st ‘𝑧)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑧)):(1...𝑁)–1-1-onto→(1...𝑁))) |
60 | 58, 59 | elab 3609 |
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘(1st ‘𝑧)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)) |
61 | 57, 60 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑆 → (2nd
‘(1st ‘𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)) |
62 | 61 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → (2nd
‘(1st ‘𝑧)):(1...𝑁)–1-1-onto→(1...𝑁)) |
63 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → (2nd
‘𝑧) ∈
(1...(𝑁 −
1))) |
64 | 23, 42, 55, 62, 63 | poimirlem1 35778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → ¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd ‘𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd ‘𝑧))‘𝑛)) |
65 | 1 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
(2nd ‘𝑇)
≠ (2nd ‘𝑧)) → 𝑁 ∈ ℕ) |
66 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑇 → (2nd ‘𝑡) = (2nd ‘𝑇)) |
67 | 66 | breq2d 5086 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑇 → (𝑦 < (2nd ‘𝑡) ↔ 𝑦 < (2nd ‘𝑇))) |
68 | 67 | ifbid 4482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑇 → if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1))) |
69 | 68 | csbeq1d 3836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
70 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑇 → (1st
‘(1st ‘𝑡)) = (1st ‘(1st
‘𝑇))) |
71 | | 2fveq3 6779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑡 = 𝑇 → (2nd
‘(1st ‘𝑡)) = (2nd ‘(1st
‘𝑇))) |
72 | 71 | imaeq1d 5968 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) = ((2nd ‘(1st
‘𝑇)) “
(1...𝑗))) |
73 | 72 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) = (((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1})) |
74 | 71 | imaeq1d 5968 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑡 = 𝑇 → ((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st
‘𝑇)) “ ((𝑗 + 1)...𝑁))) |
75 | 74 | xpeq1d 5618 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑡 = 𝑇 → (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) |
76 | 73, 75 | uneq12d 4098 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑡 = 𝑇 → ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) |
77 | 70, 76 | oveq12d 7293 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑡 = 𝑇 → ((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
78 | 77 | csbeq2dv 3839 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
79 | 69, 78 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑇 → ⦋if(𝑦 < (2nd ‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))) |
80 | 79 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
81 | 80 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
82 | 81, 2 | elrab2 3627 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑇 ∈ 𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))) |
83 | 82 | simprbi 497 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑇 ∈ 𝑆 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
84 | 4, 83 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
85 | 84 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
(2nd ‘𝑇)
≠ (2nd ‘𝑧)) → 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑇), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑇)) ∘f + ((((2nd
‘(1st ‘𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))) |
86 | | elrabi 3618 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ ⦋if(𝑦 < (2nd
‘𝑡), 𝑦, (𝑦 + 1)) / 𝑗⦌((1st
‘(1st ‘𝑡)) ∘f + ((((2nd
‘(1st ‘𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd
‘(1st ‘𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
87 | 86, 2 | eleq2s 2857 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑇 ∈ 𝑆 → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
88 | 4, 87 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁))) |
89 | | xp1st 7863 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (1st
‘𝑇) ∈
(((0..^𝐾)
↑m (1...𝑁))
× {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})) |
91 | | xp1st 7863 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (1st
‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁))) |
93 | | elmapi 8637 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘(1st ‘𝑇)) ∈ ((0..^𝐾) ↑m (1...𝑁)) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾)) |
95 | | fss 6617 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((1st ‘(1st ‘𝑇)):(1...𝑁)⟶(0..^𝐾) ∧ (0..^𝐾) ⊆ ℤ) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶ℤ) |
96 | 94, 52, 95 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶ℤ) |
97 | 96 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
(2nd ‘𝑇)
≠ (2nd ‘𝑧)) → (1st
‘(1st ‘𝑇)):(1...𝑁)⟶ℤ) |
98 | | xp2nd 7864 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑇) ∈ (((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
99 | 90, 98 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) |
100 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(2nd ‘(1st ‘𝑇)) ∈ V |
101 | | f1oeq1 6704 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = (2nd
‘(1st ‘𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))) |
102 | 100, 101 | elab 3609 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘(1st ‘𝑇)) ∈ {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
103 | 99, 102 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
104 | 103 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
(2nd ‘𝑇)
≠ (2nd ‘𝑧)) → (2nd
‘(1st ‘𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)) |
105 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
(2nd ‘𝑇)
≠ (2nd ‘𝑧)) → (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) |
106 | | xp2nd 7864 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑇 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd ‘𝑇) ∈ (0...𝑁)) |
107 | 88, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (2nd
‘𝑇) ∈ (0...𝑁)) |
108 | 107 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) →
(2nd ‘𝑇)
∈ (0...𝑁)) |
109 | | eldifsn 4720 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑇) ∈ ((0...𝑁) ∖ {(2nd ‘𝑧)}) ↔ ((2nd
‘𝑇) ∈ (0...𝑁) ∧ (2nd
‘𝑇) ≠
(2nd ‘𝑧))) |
110 | 109 | biimpri 227 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘𝑇) ∈ (0...𝑁) ∧ (2nd ‘𝑇) ≠ (2nd
‘𝑧)) →
(2nd ‘𝑇)
∈ ((0...𝑁) ∖
{(2nd ‘𝑧)})) |
111 | 108, 110 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
(2nd ‘𝑇)
≠ (2nd ‘𝑧)) → (2nd ‘𝑇) ∈ ((0...𝑁) ∖ {(2nd ‘𝑧)})) |
112 | 65, 85, 97, 104, 105, 111 | poimirlem2 35779 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ∧
(2nd ‘𝑇)
≠ (2nd ‘𝑧)) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd ‘𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd ‘𝑧))‘𝑛)) |
113 | 112 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) →
((2nd ‘𝑇)
≠ (2nd ‘𝑧) → ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd ‘𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd ‘𝑧))‘𝑛))) |
114 | 113 | necon1bd 2961 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) →
(¬ ∃*𝑛 ∈
(1...𝑁)((𝐹‘((2nd ‘𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd ‘𝑧))‘𝑛) → (2nd ‘𝑇) = (2nd ‘𝑧))) |
115 | 114 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → (¬ ∃*𝑛 ∈ (1...𝑁)((𝐹‘((2nd ‘𝑧) − 1))‘𝑛) ≠ ((𝐹‘(2nd ‘𝑧))‘𝑛) → (2nd ‘𝑇) = (2nd ‘𝑧))) |
116 | 64, 115 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → (2nd
‘𝑇) = (2nd
‘𝑧)) |
117 | 116 | neeq1d 3003 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → ((2nd
‘𝑇) ≠ 𝑁 ↔ (2nd
‘𝑧) ≠ 𝑁)) |
118 | 117 | exbiri 808 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((2nd ‘𝑧) ∈ (1...(𝑁 − 1)) → ((2nd
‘𝑧) ≠ 𝑁 → (2nd
‘𝑇) ≠ 𝑁))) |
119 | 22, 118 | mpdd 43 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((2nd ‘𝑧) ∈ (1...(𝑁 − 1)) → (2nd
‘𝑇) ≠ 𝑁)) |
120 | 119 | necon2bd 2959 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((2nd ‘𝑇) = 𝑁 → ¬ (2nd ‘𝑧) ∈ (1...(𝑁 − 1)))) |
121 | 8, 120 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ¬ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) |
122 | | xp2nd 7864 |
. . . . . . . . 9
⊢ (𝑧 ∈ ((((0..^𝐾) ↑m (1...𝑁)) × {𝑓 ∣ 𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (2nd ‘𝑧) ∈ (0...𝑁)) |
123 | 44, 122 | syl 17 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑆 → (2nd ‘𝑧) ∈ (0...𝑁)) |
124 | | nn0uz 12620 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 = (ℤ≥‘0) |
125 | 12, 124 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑁 − 1) ∈
(ℤ≥‘0)) |
126 | | fzpred 13304 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 − 1) ∈
(ℤ≥‘0) → (0...(𝑁 − 1)) = ({0} ∪ ((0 + 1)...(𝑁 − 1)))) |
127 | 125, 126 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0...(𝑁 − 1)) = ({0} ∪ ((0 + 1)...(𝑁 − 1)))) |
128 | | 0p1e1 12095 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 + 1) =
1 |
129 | 128 | oveq1i 7285 |
. . . . . . . . . . . . . . . . 17
⊢ ((0 +
1)...(𝑁 − 1)) =
(1...(𝑁 −
1)) |
130 | 129 | uneq2i 4094 |
. . . . . . . . . . . . . . . 16
⊢ ({0}
∪ ((0 + 1)...(𝑁 −
1))) = ({0} ∪ (1...(𝑁
− 1))) |
131 | 127, 130 | eqtrdi 2794 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0...(𝑁 − 1)) = ({0} ∪ (1...(𝑁 − 1)))) |
132 | 131 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2nd
‘𝑧) ∈
(0...(𝑁 − 1)) ↔
(2nd ‘𝑧)
∈ ({0} ∪ (1...(𝑁
− 1))))) |
133 | 132 | notbid 318 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (¬ (2nd
‘𝑧) ∈
(0...(𝑁 − 1)) ↔
¬ (2nd ‘𝑧) ∈ ({0} ∪ (1...(𝑁 − 1))))) |
134 | | ioran 981 |
. . . . . . . . . . . . . 14
⊢ (¬
((2nd ‘𝑧)
= 0 ∨ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) ↔ (¬ (2nd
‘𝑧) = 0 ∧ ¬
(2nd ‘𝑧)
∈ (1...(𝑁 −
1)))) |
135 | | elun 4083 |
. . . . . . . . . . . . . . 15
⊢
((2nd ‘𝑧) ∈ ({0} ∪ (1...(𝑁 − 1))) ↔ ((2nd
‘𝑧) ∈ {0} ∨
(2nd ‘𝑧)
∈ (1...(𝑁 −
1)))) |
136 | | fvex 6787 |
. . . . . . . . . . . . . . . . 17
⊢
(2nd ‘𝑧) ∈ V |
137 | 136 | elsn 4576 |
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑧) ∈ {0} ↔ (2nd
‘𝑧) =
0) |
138 | 137 | orbi1i 911 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑧) ∈ {0} ∨ (2nd
‘𝑧) ∈
(1...(𝑁 − 1))) ↔
((2nd ‘𝑧)
= 0 ∨ (2nd ‘𝑧) ∈ (1...(𝑁 − 1)))) |
139 | 135, 138 | bitri 274 |
. . . . . . . . . . . . . 14
⊢
((2nd ‘𝑧) ∈ ({0} ∪ (1...(𝑁 − 1))) ↔ ((2nd
‘𝑧) = 0 ∨
(2nd ‘𝑧)
∈ (1...(𝑁 −
1)))) |
140 | 134, 139 | xchnxbir 333 |
. . . . . . . . . . . . 13
⊢ (¬
(2nd ‘𝑧)
∈ ({0} ∪ (1...(𝑁
− 1))) ↔ (¬ (2nd ‘𝑧) = 0 ∧ ¬ (2nd
‘𝑧) ∈
(1...(𝑁 −
1)))) |
141 | 133, 140 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝜑 → (¬ (2nd
‘𝑧) ∈
(0...(𝑁 − 1)) ↔
(¬ (2nd ‘𝑧) = 0 ∧ ¬ (2nd
‘𝑧) ∈
(1...(𝑁 −
1))))) |
142 | 141 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝜑 → (((2nd
‘𝑧) ∈ (0...𝑁) ∧ ¬ (2nd
‘𝑧) ∈
(0...(𝑁 − 1))) ↔
((2nd ‘𝑧)
∈ (0...𝑁) ∧ (¬
(2nd ‘𝑧) =
0 ∧ ¬ (2nd ‘𝑧) ∈ (1...(𝑁 − 1)))))) |
143 | | uncom 4087 |
. . . . . . . . . . . . . . . 16
⊢
((0...(𝑁 − 1))
∪ {𝑁}) = ({𝑁} ∪ (0...(𝑁 − 1))) |
144 | 143 | difeq1i 4053 |
. . . . . . . . . . . . . . 15
⊢
(((0...(𝑁 −
1)) ∪ {𝑁}) ∖
(0...(𝑁 − 1))) =
(({𝑁} ∪ (0...(𝑁 − 1))) ∖
(0...(𝑁 −
1))) |
145 | | difun2 4414 |
. . . . . . . . . . . . . . 15
⊢ (({𝑁} ∪ (0...(𝑁 − 1))) ∖ (0...(𝑁 − 1))) = ({𝑁} ∖ (0...(𝑁 − 1))) |
146 | 144, 145 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢
(((0...(𝑁 −
1)) ∪ {𝑁}) ∖
(0...(𝑁 − 1))) =
({𝑁} ∖ (0...(𝑁 − 1))) |
147 | 1 | nncnd 11989 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℂ) |
148 | | npcan1 11400 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
149 | 147, 148 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑁 − 1) + 1) = 𝑁) |
150 | 1 | nnnn0d 12293 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
151 | 150, 124 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
152 | 149, 151 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘0)) |
153 | 12 | nn0zd 12424 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
154 | | uzid 12597 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 − 1) ∈ ℤ
→ (𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1))) |
155 | | peano2uz 12641 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 − 1) ∈
(ℤ≥‘(𝑁 − 1)) → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
156 | 153, 154,
155 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑁 − 1) + 1) ∈
(ℤ≥‘(𝑁 − 1))) |
157 | 149, 156 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) |
158 | | fzsplit2 13281 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 − 1) + 1) ∈
(ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘(𝑁 − 1))) → (0...𝑁) = ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
159 | 152, 157,
158 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (0...𝑁) = ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁))) |
160 | 149 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = (𝑁...𝑁)) |
161 | 1 | nnzd 12425 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℤ) |
162 | | fzsn 13298 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℤ → (𝑁...𝑁) = {𝑁}) |
163 | 161, 162 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑁...𝑁) = {𝑁}) |
164 | 160, 163 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑁 − 1) + 1)...𝑁) = {𝑁}) |
165 | 164 | uneq2d 4097 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((0...(𝑁 − 1)) ∪ (((𝑁 − 1) + 1)...𝑁)) = ((0...(𝑁 − 1)) ∪ {𝑁})) |
166 | 159, 165 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0...𝑁) = ((0...(𝑁 − 1)) ∪ {𝑁})) |
167 | 166 | difeq1d 4056 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((0...𝑁) ∖ (0...(𝑁 − 1))) = (((0...(𝑁 − 1)) ∪ {𝑁}) ∖ (0...(𝑁 − 1)))) |
168 | | elfzle2 13260 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ (0...(𝑁 − 1)) → 𝑁 ≤ (𝑁 − 1)) |
169 | 15, 168 | nsyl 140 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ 𝑁 ∈ (0...(𝑁 − 1))) |
170 | | incom 4135 |
. . . . . . . . . . . . . . . . 17
⊢
((0...(𝑁 − 1))
∩ {𝑁}) = ({𝑁} ∩ (0...(𝑁 − 1))) |
171 | 170 | eqeq1i 2743 |
. . . . . . . . . . . . . . . 16
⊢
(((0...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ({𝑁} ∩
(0...(𝑁 − 1))) =
∅) |
172 | | disjsn 4647 |
. . . . . . . . . . . . . . . 16
⊢
(((0...(𝑁 −
1)) ∩ {𝑁}) = ∅
↔ ¬ 𝑁 ∈
(0...(𝑁 −
1))) |
173 | | disj3 4387 |
. . . . . . . . . . . . . . . 16
⊢ (({𝑁} ∩ (0...(𝑁 − 1))) = ∅ ↔ {𝑁} = ({𝑁} ∖ (0...(𝑁 − 1)))) |
174 | 171, 172,
173 | 3bitr3i 301 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑁 ∈ (0...(𝑁 − 1)) ↔ {𝑁} = ({𝑁} ∖ (0...(𝑁 − 1)))) |
175 | 169, 174 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝑁} = ({𝑁} ∖ (0...(𝑁 − 1)))) |
176 | 146, 167,
175 | 3eqtr4a 2804 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((0...𝑁) ∖ (0...(𝑁 − 1))) = {𝑁}) |
177 | 176 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((2nd
‘𝑧) ∈
((0...𝑁) ∖
(0...(𝑁 − 1))) ↔
(2nd ‘𝑧)
∈ {𝑁})) |
178 | | eldif 3897 |
. . . . . . . . . . . 12
⊢
((2nd ‘𝑧) ∈ ((0...𝑁) ∖ (0...(𝑁 − 1))) ↔ ((2nd
‘𝑧) ∈ (0...𝑁) ∧ ¬ (2nd
‘𝑧) ∈
(0...(𝑁 −
1)))) |
179 | 136 | elsn 4576 |
. . . . . . . . . . . 12
⊢
((2nd ‘𝑧) ∈ {𝑁} ↔ (2nd ‘𝑧) = 𝑁) |
180 | 177, 178,
179 | 3bitr3g 313 |
. . . . . . . . . . 11
⊢ (𝜑 → (((2nd
‘𝑧) ∈ (0...𝑁) ∧ ¬ (2nd
‘𝑧) ∈
(0...(𝑁 − 1))) ↔
(2nd ‘𝑧) =
𝑁)) |
181 | 142, 180 | bitr3d 280 |
. . . . . . . . . 10
⊢ (𝜑 → (((2nd
‘𝑧) ∈ (0...𝑁) ∧ (¬ (2nd
‘𝑧) = 0 ∧ ¬
(2nd ‘𝑧)
∈ (1...(𝑁 −
1)))) ↔ (2nd ‘𝑧) = 𝑁)) |
182 | 181 | biimpd 228 |
. . . . . . . . 9
⊢ (𝜑 → (((2nd
‘𝑧) ∈ (0...𝑁) ∧ (¬ (2nd
‘𝑧) = 0 ∧ ¬
(2nd ‘𝑧)
∈ (1...(𝑁 −
1)))) → (2nd ‘𝑧) = 𝑁)) |
183 | 182 | expdimp 453 |
. . . . . . . 8
⊢ ((𝜑 ∧ (2nd
‘𝑧) ∈ (0...𝑁)) → ((¬
(2nd ‘𝑧) =
0 ∧ ¬ (2nd ‘𝑧) ∈ (1...(𝑁 − 1))) → (2nd
‘𝑧) = 𝑁)) |
184 | 123, 183 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((¬ (2nd
‘𝑧) = 0 ∧ ¬
(2nd ‘𝑧)
∈ (1...(𝑁 − 1)))
→ (2nd ‘𝑧) = 𝑁)) |
185 | 121, 184 | mpan2d 691 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (¬ (2nd ‘𝑧) = 0 → (2nd
‘𝑧) = 𝑁)) |
186 | 1, 2, 3 | poimirlem14 35791 |
. . . . . . . . . 10
⊢ (𝜑 → ∃*𝑧 ∈ 𝑆 (2nd ‘𝑧) = 𝑁) |
187 | | fveqeq2 6783 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑠 → ((2nd ‘𝑧) = 𝑁 ↔ (2nd ‘𝑠) = 𝑁)) |
188 | 187 | rmo4 3665 |
. . . . . . . . . 10
⊢
(∃*𝑧 ∈
𝑆 (2nd
‘𝑧) = 𝑁 ↔ ∀𝑧 ∈ 𝑆 ∀𝑠 ∈ 𝑆 (((2nd ‘𝑧) = 𝑁 ∧ (2nd ‘𝑠) = 𝑁) → 𝑧 = 𝑠)) |
189 | 186, 188 | sylib 217 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 ∀𝑠 ∈ 𝑆 (((2nd ‘𝑧) = 𝑁 ∧ (2nd ‘𝑠) = 𝑁) → 𝑧 = 𝑠)) |
190 | 189 | r19.21bi 3134 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ∀𝑠 ∈ 𝑆 (((2nd ‘𝑧) = 𝑁 ∧ (2nd ‘𝑠) = 𝑁) → 𝑧 = 𝑠)) |
191 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑇 ∈ 𝑆) |
192 | | fveqeq2 6783 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑇 → ((2nd ‘𝑠) = 𝑁 ↔ (2nd ‘𝑇) = 𝑁)) |
193 | 192 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → (((2nd ‘𝑧) = 𝑁 ∧ (2nd ‘𝑠) = 𝑁) ↔ ((2nd ‘𝑧) = 𝑁 ∧ (2nd ‘𝑇) = 𝑁))) |
194 | | eqeq2 2750 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → (𝑧 = 𝑠 ↔ 𝑧 = 𝑇)) |
195 | 193, 194 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → ((((2nd ‘𝑧) = 𝑁 ∧ (2nd ‘𝑠) = 𝑁) → 𝑧 = 𝑠) ↔ (((2nd ‘𝑧) = 𝑁 ∧ (2nd ‘𝑇) = 𝑁) → 𝑧 = 𝑇))) |
196 | 195 | rspccv 3558 |
. . . . . . . 8
⊢
(∀𝑠 ∈
𝑆 (((2nd
‘𝑧) = 𝑁 ∧ (2nd
‘𝑠) = 𝑁) → 𝑧 = 𝑠) → (𝑇 ∈ 𝑆 → (((2nd ‘𝑧) = 𝑁 ∧ (2nd ‘𝑇) = 𝑁) → 𝑧 = 𝑇))) |
197 | 190, 191,
196 | sylc 65 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (((2nd ‘𝑧) = 𝑁 ∧ (2nd ‘𝑇) = 𝑁) → 𝑧 = 𝑇)) |
198 | 8, 197 | mpan2d 691 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((2nd ‘𝑧) = 𝑁 → 𝑧 = 𝑇)) |
199 | 185, 198 | syld 47 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (¬ (2nd ‘𝑧) = 0 → 𝑧 = 𝑇)) |
200 | 199 | necon1ad 2960 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝑧 ≠ 𝑇 → (2nd ‘𝑧) = 0)) |
201 | 200 | ralrimiva 3103 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ 𝑇 → (2nd ‘𝑧) = 0)) |
202 | 1, 2, 3 | poimirlem13 35790 |
. . 3
⊢ (𝜑 → ∃*𝑧 ∈ 𝑆 (2nd ‘𝑧) = 0) |
203 | | rmoim 3675 |
. . 3
⊢
(∀𝑧 ∈
𝑆 (𝑧 ≠ 𝑇 → (2nd ‘𝑧) = 0) → (∃*𝑧 ∈ 𝑆 (2nd ‘𝑧) = 0 → ∃*𝑧 ∈ 𝑆 𝑧 ≠ 𝑇)) |
204 | 201, 202,
203 | sylc 65 |
. 2
⊢ (𝜑 → ∃*𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |
205 | | reu5 3361 |
. 2
⊢
(∃!𝑧 ∈
𝑆 𝑧 ≠ 𝑇 ↔ (∃𝑧 ∈ 𝑆 𝑧 ≠ 𝑇 ∧ ∃*𝑧 ∈ 𝑆 𝑧 ≠ 𝑇)) |
206 | 7, 204, 205 | sylanbrc 583 |
1
⊢ (𝜑 → ∃!𝑧 ∈ 𝑆 𝑧 ≠ 𝑇) |