| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rinvmod | Structured version Visualization version GIF version | ||
| Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovmo 7649. (Contributed by AV, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| rinvmod.b | ⊢ 𝐵 = (Base‘𝐺) |
| rinvmod.0 | ⊢ 0 = (0g‘𝐺) |
| rinvmod.p | ⊢ + = (+g‘𝐺) |
| rinvmod.m | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| rinvmod.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rinvmod | ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rinvmod.m | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝐺 ∈ CMnd) |
| 3 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝑤 ∈ 𝐵) | |
| 4 | rinvmod.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
| 6 | rinvmod.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | rinvmod.p | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
| 8 | 6, 7 | cmncom 19784 | . . . . . . . 8 ⊢ ((𝐺 ∈ CMnd ∧ 𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) |
| 9 | 2, 3, 5, 8 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) |
| 11 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝐴 + 𝑤) = 0 ) | |
| 12 | 10, 11 | eqtrd 2771 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = 0 ) |
| 13 | 12, 11 | jca 511 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) |
| 14 | 13 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))) |
| 15 | 14 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))) |
| 16 | rinvmod.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 17 | cmnmnd 19783 | . . . 4 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 18 | 1, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 19 | 6, 16, 7, 18, 4 | mndinvmod 18747 | . 2 ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) |
| 20 | rmoim 3728 | . 2 ⊢ (∀𝑤 ∈ 𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) → (∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 )) | |
| 21 | 15, 19, 20 | sylc 65 | 1 ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃*wrmo 3363 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Mndcmnd 18717 CMndccmn 19766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-riota 7367 df-ov 7413 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-cmn 19768 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |