Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rinvmod | Structured version Visualization version GIF version |
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovmo 7487. (Contributed by AV, 31-Dec-2023.) |
Ref | Expression |
---|---|
rinvmod.b | ⊢ 𝐵 = (Base‘𝐺) |
rinvmod.0 | ⊢ 0 = (0g‘𝐺) |
rinvmod.p | ⊢ + = (+g‘𝐺) |
rinvmod.m | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
rinvmod.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
rinvmod | ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rinvmod.m | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝐺 ∈ CMnd) |
3 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝑤 ∈ 𝐵) | |
4 | rinvmod.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
6 | rinvmod.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
7 | rinvmod.p | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
8 | 6, 7 | cmncom 19318 | . . . . . . . 8 ⊢ ((𝐺 ∈ CMnd ∧ 𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) |
9 | 2, 3, 5, 8 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) |
11 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝐴 + 𝑤) = 0 ) | |
12 | 10, 11 | eqtrd 2778 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = 0 ) |
13 | 12, 11 | jca 511 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) |
14 | 13 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))) |
15 | 14 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))) |
16 | rinvmod.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
17 | cmnmnd 19317 | . . . 4 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
18 | 1, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
19 | 6, 16, 7, 18, 4 | mndinvmod 18330 | . 2 ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) |
20 | rmoim 3670 | . 2 ⊢ (∀𝑤 ∈ 𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) → (∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 )) | |
21 | 15, 19, 20 | sylc 65 | 1 ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃*wrmo 3066 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mndcmnd 18300 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cmn 19303 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |