MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rinvmod Structured version   Visualization version   GIF version

Theorem rinvmod 19743
Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovmo 7629. (Contributed by AV, 31-Dec-2023.)
Hypotheses
Ref Expression
rinvmod.b 𝐵 = (Base‘𝐺)
rinvmod.0 0 = (0g𝐺)
rinvmod.p + = (+g𝐺)
rinvmod.m (𝜑𝐺 ∈ CMnd)
rinvmod.a (𝜑𝐴𝐵)
Assertion
Ref Expression
rinvmod (𝜑 → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 )
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤, 0   𝑤, +   𝜑,𝑤
Allowed substitution hint:   𝐺(𝑤)

Proof of Theorem rinvmod
StepHypRef Expression
1 rinvmod.m . . . . . . . . 9 (𝜑𝐺 ∈ CMnd)
21adantr 480 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝐺 ∈ CMnd)
3 simpr 484 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝑤𝐵)
4 rinvmod.a . . . . . . . . 9 (𝜑𝐴𝐵)
54adantr 480 . . . . . . . 8 ((𝜑𝑤𝐵) → 𝐴𝐵)
6 rinvmod.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
7 rinvmod.p . . . . . . . . 9 + = (+g𝐺)
86, 7cmncom 19735 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝑤𝐵𝐴𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
92, 3, 5, 8syl3anc 1373 . . . . . . 7 ((𝜑𝑤𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
109adantr 480 . . . . . 6 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = (𝐴 + 𝑤))
11 simpr 484 . . . . . 6 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝐴 + 𝑤) = 0 )
1210, 11eqtrd 2765 . . . . 5 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = 0 )
1312, 11jca 511 . . . 4 (((𝜑𝑤𝐵) ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
1413ex 412 . . 3 ((𝜑𝑤𝐵) → ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )))
1514ralrimiva 3126 . 2 (𝜑 → ∀𝑤𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )))
16 rinvmod.0 . . 3 0 = (0g𝐺)
17 cmnmnd 19734 . . . 4 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
181, 17syl 17 . . 3 (𝜑𝐺 ∈ Mnd)
196, 16, 7, 18, 4mndinvmod 18698 . 2 (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
20 rmoim 3714 . 2 (∀𝑤𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) → (∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 ))
2115, 19, 20sylc 65 1 (𝜑 → ∃*𝑤𝐵 (𝐴 + 𝑤) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  ∃*wrmo 3355  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mndcmnd 18668  CMndccmn 19717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-cmn 19719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator