| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rinvmod | Structured version Visualization version GIF version | ||
| Description: Uniqueness of a right inverse element in a commutative monoid, if it exists. Corresponds to caovmo 7629. (Contributed by AV, 31-Dec-2023.) |
| Ref | Expression |
|---|---|
| rinvmod.b | ⊢ 𝐵 = (Base‘𝐺) |
| rinvmod.0 | ⊢ 0 = (0g‘𝐺) |
| rinvmod.p | ⊢ + = (+g‘𝐺) |
| rinvmod.m | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| rinvmod.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rinvmod | ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rinvmod.m | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝐺 ∈ CMnd) |
| 3 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝑤 ∈ 𝐵) | |
| 4 | rinvmod.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
| 6 | rinvmod.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | rinvmod.p | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
| 8 | 6, 7 | cmncom 19735 | . . . . . . . 8 ⊢ ((𝐺 ∈ CMnd ∧ 𝑤 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) |
| 9 | 2, 3, 5, 8 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = (𝐴 + 𝑤)) |
| 11 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝐴 + 𝑤) = 0 ) | |
| 12 | 10, 11 | eqtrd 2765 | . . . . 5 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → (𝑤 + 𝐴) = 0 ) |
| 13 | 12, 11 | jca 511 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐵) ∧ (𝐴 + 𝑤) = 0 ) → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) |
| 14 | 13 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))) |
| 15 | 14 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ 𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))) |
| 16 | rinvmod.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 17 | cmnmnd 19734 | . . . 4 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | |
| 18 | 1, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 19 | 6, 16, 7, 18, 4 | mndinvmod 18698 | . 2 ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) |
| 20 | rmoim 3714 | . 2 ⊢ (∀𝑤 ∈ 𝐵 ((𝐴 + 𝑤) = 0 → ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 )) → (∃*𝑤 ∈ 𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ) → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 )) | |
| 21 | 15, 19, 20 | sylc 65 | 1 ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃*wrmo 3355 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 CMndccmn 19717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-cmn 19719 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |