Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexunirn Structured version   Visualization version   GIF version

Theorem rexunirn 32511
Description: Restricted existential quantification over the union of the range of a function. Cf. rexrn 7107 and eluni2 4911. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
rexunirn.1 𝐹 = (𝑥𝐴𝐵)
rexunirn.2 (𝑥𝐴𝐵𝑉)
Assertion
Ref Expression
rexunirn (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑦 ran 𝐹𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐹(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rexunirn
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 df-rex 3071 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
2 19.42v 1953 . . . . 5 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝜑)))
3 df-rex 3071 . . . . . 6 (∃𝑦𝐵 𝜑 ↔ ∃𝑦(𝑦𝐵𝜑))
43anbi2i 623 . . . . 5 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝜑)))
52, 4bitr4i 278 . . . 4 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
65exbii 1848 . . 3 (∃𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
71, 6bitr4i 278 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
8 rexunirn.2 . . . . . . . 8 (𝑥𝐴𝐵𝑉)
9 rexunirn.1 . . . . . . . . 9 𝐹 = (𝑥𝐴𝐵)
109elrnmpt1 5971 . . . . . . . 8 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
118, 10mpdan 687 . . . . . . 7 (𝑥𝐴𝐵 ∈ ran 𝐹)
12 eleq2 2830 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑦𝑏𝑦𝐵))
1312anbi1d 631 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑦𝑏𝜑) ↔ (𝑦𝐵𝜑)))
1413rspcev 3622 . . . . . . 7 ((𝐵 ∈ ran 𝐹 ∧ (𝑦𝐵𝜑)) → ∃𝑏 ∈ ran 𝐹(𝑦𝑏𝜑))
1511, 14sylan 580 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑏 ∈ ran 𝐹(𝑦𝑏𝜑))
16 r19.41v 3189 . . . . . 6 (∃𝑏 ∈ ran 𝐹(𝑦𝑏𝜑) ↔ (∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
1715, 16sylib 218 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝐵𝜑)) → (∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
1817eximi 1835 . . . 4 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
19 df-rex 3071 . . . . 5 (∃𝑦 ran 𝐹𝜑 ↔ ∃𝑦(𝑦 ran 𝐹𝜑))
20 eluni2 4911 . . . . . . 7 (𝑦 ran 𝐹 ↔ ∃𝑏 ∈ ran 𝐹 𝑦𝑏)
2120anbi1i 624 . . . . . 6 ((𝑦 ran 𝐹𝜑) ↔ (∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
2221exbii 1848 . . . . 5 (∃𝑦(𝑦 ran 𝐹𝜑) ↔ ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
2319, 22bitri 275 . . . 4 (∃𝑦 ran 𝐹𝜑 ↔ ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
2418, 23sylibr 234 . . 3 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑦 ran 𝐹𝜑)
2524exlimiv 1930 . 2 (∃𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑦 ran 𝐹𝜑)
267, 25sylbi 217 1 (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑦 ran 𝐹𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3070   cuni 4907  cmpt 5225  ran crn 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-cnv 5693  df-dm 5695  df-rn 5696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator