Step | Hyp | Ref
| Expression |
1 | | df-rex 3071 |
. . 3
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
2 | | 19.42v 1960 |
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) |
3 | | df-rex 3071 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) |
4 | 3 | anbi2i 622 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) |
5 | 2, 4 | bitr4i 277 |
. . . 4
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
6 | 5 | exbii 1853 |
. . 3
⊢
(∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
7 | 1, 6 | bitr4i 277 |
. 2
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
8 | | rexunirn.2 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉) |
9 | | rexunirn.1 |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
10 | 9 | elrnmpt1 5864 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ ran 𝐹) |
11 | 8, 10 | mpdan 683 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ ran 𝐹) |
12 | | eleq2 2828 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝐵)) |
13 | 12 | anbi1d 629 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((𝑦 ∈ 𝑏 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
14 | 13 | rspcev 3560 |
. . . . . . 7
⊢ ((𝐵 ∈ ran 𝐹 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → ∃𝑏 ∈ ran 𝐹(𝑦 ∈ 𝑏 ∧ 𝜑)) |
15 | 11, 14 | sylan 579 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → ∃𝑏 ∈ ran 𝐹(𝑦 ∈ 𝑏 ∧ 𝜑)) |
16 | | r19.41v 3275 |
. . . . . 6
⊢
(∃𝑏 ∈ ran
𝐹(𝑦 ∈ 𝑏 ∧ 𝜑) ↔ (∃𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑)) |
17 | 15, 16 | sylib 217 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → (∃𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑)) |
18 | 17 | eximi 1840 |
. . . 4
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑)) |
19 | | df-rex 3071 |
. . . . 5
⊢
(∃𝑦 ∈
∪ ran 𝐹𝜑 ↔ ∃𝑦(𝑦 ∈ ∪ ran
𝐹 ∧ 𝜑)) |
20 | | eluni2 4848 |
. . . . . . 7
⊢ (𝑦 ∈ ∪ ran 𝐹 ↔ ∃𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏) |
21 | 20 | anbi1i 623 |
. . . . . 6
⊢ ((𝑦 ∈ ∪ ran 𝐹 ∧ 𝜑) ↔ (∃𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑)) |
22 | 21 | exbii 1853 |
. . . . 5
⊢
(∃𝑦(𝑦 ∈ ∪ ran 𝐹 ∧ 𝜑) ↔ ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑)) |
23 | 19, 22 | bitri 274 |
. . . 4
⊢
(∃𝑦 ∈
∪ ran 𝐹𝜑 ↔ ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦 ∈ 𝑏 ∧ 𝜑)) |
24 | 18, 23 | sylibr 233 |
. . 3
⊢
(∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → ∃𝑦 ∈ ∪ ran
𝐹𝜑) |
25 | 24 | exlimiv 1936 |
. 2
⊢
(∃𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → ∃𝑦 ∈ ∪ ran
𝐹𝜑) |
26 | 7, 25 | sylbi 216 |
1
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃𝑦 ∈ ∪ ran
𝐹𝜑) |