Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexunirn Structured version   Visualization version   GIF version

Theorem rexunirn 32428
Description: Restricted existential quantification over the union of the range of a function. Cf. rexrn 7062 and eluni2 4878. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Hypotheses
Ref Expression
rexunirn.1 𝐹 = (𝑥𝐴𝐵)
rexunirn.2 (𝑥𝐴𝐵𝑉)
Assertion
Ref Expression
rexunirn (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑦 ran 𝐹𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐹(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rexunirn
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 df-rex 3055 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
2 19.42v 1953 . . . . 5 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝜑)))
3 df-rex 3055 . . . . . 6 (∃𝑦𝐵 𝜑 ↔ ∃𝑦(𝑦𝐵𝜑))
43anbi2i 623 . . . . 5 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦(𝑦𝐵𝜑)))
52, 4bitr4i 278 . . . 4 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ (𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
65exbii 1848 . . 3 (∃𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
71, 6bitr4i 278 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)))
8 rexunirn.2 . . . . . . . 8 (𝑥𝐴𝐵𝑉)
9 rexunirn.1 . . . . . . . . 9 𝐹 = (𝑥𝐴𝐵)
109elrnmpt1 5927 . . . . . . . 8 ((𝑥𝐴𝐵𝑉) → 𝐵 ∈ ran 𝐹)
118, 10mpdan 687 . . . . . . 7 (𝑥𝐴𝐵 ∈ ran 𝐹)
12 eleq2 2818 . . . . . . . . 9 (𝑏 = 𝐵 → (𝑦𝑏𝑦𝐵))
1312anbi1d 631 . . . . . . . 8 (𝑏 = 𝐵 → ((𝑦𝑏𝜑) ↔ (𝑦𝐵𝜑)))
1413rspcev 3591 . . . . . . 7 ((𝐵 ∈ ran 𝐹 ∧ (𝑦𝐵𝜑)) → ∃𝑏 ∈ ran 𝐹(𝑦𝑏𝜑))
1511, 14sylan 580 . . . . . 6 ((𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑏 ∈ ran 𝐹(𝑦𝑏𝜑))
16 r19.41v 3168 . . . . . 6 (∃𝑏 ∈ ran 𝐹(𝑦𝑏𝜑) ↔ (∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
1715, 16sylib 218 . . . . 5 ((𝑥𝐴 ∧ (𝑦𝐵𝜑)) → (∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
1817eximi 1835 . . . 4 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
19 df-rex 3055 . . . . 5 (∃𝑦 ran 𝐹𝜑 ↔ ∃𝑦(𝑦 ran 𝐹𝜑))
20 eluni2 4878 . . . . . . 7 (𝑦 ran 𝐹 ↔ ∃𝑏 ∈ ran 𝐹 𝑦𝑏)
2120anbi1i 624 . . . . . 6 ((𝑦 ran 𝐹𝜑) ↔ (∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
2221exbii 1848 . . . . 5 (∃𝑦(𝑦 ran 𝐹𝜑) ↔ ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
2319, 22bitri 275 . . . 4 (∃𝑦 ran 𝐹𝜑 ↔ ∃𝑦(∃𝑏 ∈ ran 𝐹 𝑦𝑏𝜑))
2418, 23sylibr 234 . . 3 (∃𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑦 ran 𝐹𝜑)
2524exlimiv 1930 . 2 (∃𝑥𝑦(𝑥𝐴 ∧ (𝑦𝐵𝜑)) → ∃𝑦 ran 𝐹𝜑)
267, 25sylbi 217 1 (∃𝑥𝐴𝑦𝐵 𝜑 → ∃𝑦 ran 𝐹𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054   cuni 4874  cmpt 5191  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator