MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrrgr Structured version   Visualization version   GIF version

Theorem rusgrrgr 27930
Description: A k-regular simple graph is a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
rusgrrgr (𝐺 RegUSGraph 𝐾𝐺 RegGraph 𝐾)

Proof of Theorem rusgrrgr
StepHypRef Expression
1 rusgrprop 27929 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))
21simprd 496 1 (𝐺 RegUSGraph 𝐾𝐺 RegGraph 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5074  USGraphcusgr 27519   RegGraph crgr 27922   RegUSGraph crusgr 27923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rusgr 27925
This theorem is referenced by:  0grrgr  27947  rgrprc  27958  frrusgrord  28705
  Copyright terms: Public domain W3C validator