MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrrgr Structured version   Visualization version   GIF version

Theorem rusgrrgr 29255
Description: A k-regular simple graph is a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
rusgrrgr (𝐺 RegUSGraph 𝐾𝐺 RegGraph 𝐾)

Proof of Theorem rusgrrgr
StepHypRef Expression
1 rusgrprop 29254 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))
21simprd 495 1 (𝐺 RegUSGraph 𝐾𝐺 RegGraph 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105   class class class wbr 5148  USGraphcusgr 28844   RegGraph crgr 29247   RegUSGraph crusgr 29248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rusgr 29250
This theorem is referenced by:  0grrgr  29272  rgrprc  29283  frrusgrord  30029
  Copyright terms: Public domain W3C validator