MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrrgr Structured version   Visualization version   GIF version

Theorem rusgrrgr 29497
Description: A k-regular simple graph is a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
rusgrrgr (𝐺 RegUSGraph 𝐾𝐺 RegGraph 𝐾)

Proof of Theorem rusgrrgr
StepHypRef Expression
1 rusgrprop 29496 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))
21simprd 495 1 (𝐺 RegUSGraph 𝐾𝐺 RegGraph 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5109  USGraphcusgr 29082   RegGraph crgr 29489   RegUSGraph crusgr 29490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-rusgr 29492
This theorem is referenced by:  0grrgr  29514  rgrprc  29525  frrusgrord  30276
  Copyright terms: Public domain W3C validator