MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrrgr Structured version   Visualization version   GIF version

Theorem rusgrrgr 29596
Description: A k-regular simple graph is a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
rusgrrgr (𝐺 RegUSGraph 𝐾𝐺 RegGraph 𝐾)

Proof of Theorem rusgrrgr
StepHypRef Expression
1 rusgrprop 29595 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))
21simprd 495 1 (𝐺 RegUSGraph 𝐾𝐺 RegGraph 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5148  USGraphcusgr 29181   RegGraph crgr 29588   RegUSGraph crusgr 29589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rusgr 29591
This theorem is referenced by:  0grrgr  29613  rgrprc  29624  frrusgrord  30370
  Copyright terms: Public domain W3C validator