![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrrgr | Structured version Visualization version GIF version |
Description: A k-regular simple graph is a k-regular graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
Ref | Expression |
---|---|
rusgrrgr | ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 RegGraph 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrprop 29598 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) | |
2 | 1 | simprd 495 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 RegGraph 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 USGraphcusgr 29184 RegGraph crgr 29591 RegUSGraph crusgr 29592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rusgr 29594 |
This theorem is referenced by: 0grrgr 29616 rgrprc 29627 frrusgrord 30373 |
Copyright terms: Public domain | W3C validator |