MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrusgr Structured version   Visualization version   GIF version

Theorem rusgrusgr 29256
Description: A k-regular simple graph is a simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.)
Assertion
Ref Expression
rusgrusgr (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)

Proof of Theorem rusgrusgr
StepHypRef Expression
1 rusgrprop 29254 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾))
21simpld 494 1 (𝐺 RegUSGraph 𝐾𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098   class class class wbr 5138  USGraphcusgr 28844   RegGraph crgr 29247   RegUSGraph crusgr 29248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-rusgr 29250
This theorem is referenced by:  finrusgrfusgr  29257  rusgr0edg  29662  rusgrnumwwlks  29663  rusgrnumwwlk  29664  rusgrnumwlkg  29666  numclwwlk1  30049  clwlknon2num  30056  numclwlk1lem1  30057  numclwlk1lem2  30058
  Copyright terms: Public domain W3C validator