| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rusgrusgr | Structured version Visualization version GIF version | ||
| Description: A k-regular simple graph is a simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
| Ref | Expression |
|---|---|
| rusgrusgr | ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rusgrprop 29490 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) | |
| 2 | 1 | simpld 494 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 USGraphcusgr 29076 RegGraph crgr 29483 RegUSGraph crusgr 29484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rusgr 29486 |
| This theorem is referenced by: finrusgrfusgr 29493 rusgr0edg 29903 rusgrnumwwlks 29904 rusgrnumwwlk 29905 rusgrnumwlkg 29907 numclwwlk1 30290 clwlknon2num 30297 numclwlk1lem1 30298 numclwlk1lem2 30299 |
| Copyright terms: Public domain | W3C validator |