![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrusgr | Structured version Visualization version GIF version |
Description: A k-regular simple graph is a simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
Ref | Expression |
---|---|
rusgrusgr | ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrprop 29252 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) | |
2 | 1 | simpld 494 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5148 USGraphcusgr 28842 RegGraph crgr 29245 RegUSGraph crusgr 29246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rusgr 29248 |
This theorem is referenced by: finrusgrfusgr 29255 rusgr0edg 29660 rusgrnumwwlks 29661 rusgrnumwwlk 29662 rusgrnumwlkg 29664 numclwwlk1 30047 clwlknon2num 30054 numclwlk1lem1 30055 numclwlk1lem2 30056 |
Copyright terms: Public domain | W3C validator |