![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrusgr | Structured version Visualization version GIF version |
Description: A k-regular simple graph is a simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
Ref | Expression |
---|---|
rusgrusgr | ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrprop 29594 | . 2 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾)) | |
2 | 1 | simpld 494 | 1 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5147 USGraphcusgr 29180 RegGraph crgr 29587 RegUSGraph crusgr 29588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rusgr 29590 |
This theorem is referenced by: finrusgrfusgr 29597 rusgr0edg 30002 rusgrnumwwlks 30003 rusgrnumwwlk 30004 rusgrnumwlkg 30006 numclwwlk1 30389 clwlknon2num 30396 numclwlk1lem1 30397 numclwlk1lem2 30398 |
Copyright terms: Public domain | W3C validator |