![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frrusgrord | Structured version Visualization version GIF version |
Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". Variant of frrusgrord0 30368, using the definition RegUSGraph (df-rusgr 29590). (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
Ref | Expression |
---|---|
frrusgrord0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
frrusgrord | ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrrgr 29595 | . . . . . . 7 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 RegGraph 𝐾) | |
2 | frrusgrord0.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | eqid 2734 | . . . . . . . 8 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
4 | 2, 3 | rgrprop 29592 | . . . . . . 7 ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) |
6 | 5 | simprd 495 | . . . . 5 ⊢ (𝐺 RegUSGraph 𝐾 → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) |
7 | 2 | frrusgrord0 30368 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
8 | 6, 7 | syl5 34 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
9 | 8 | 3expb 1119 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (𝐺 RegUSGraph 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
10 | 9 | expcom 413 | . 2 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))) |
11 | 10 | impd 410 | 1 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ∅c0 4338 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 Fincfn 8983 1c1 11153 + caddc 11155 · cmul 11157 − cmin 11489 ℕ0*cxnn0 12596 ♯chash 14365 Vtxcvtx 29027 VtxDegcvtxdg 29497 RegGraph crgr 29587 RegUSGraph crusgr 29588 FriendGraph cfrgr 30286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-ac2 10500 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-disj 5115 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-er 8743 df-map 8866 df-pm 8867 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-oi 9547 df-dju 9938 df-card 9976 df-ac 10153 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-xnn0 12597 df-z 12611 df-uz 12876 df-rp 13032 df-xadd 13152 df-fz 13544 df-fzo 13691 df-seq 14039 df-exp 14099 df-hash 14366 df-word 14549 df-concat 14605 df-s1 14630 df-s2 14883 df-s3 14884 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-sum 15719 df-vtx 29029 df-iedg 29030 df-edg 29079 df-uhgr 29089 df-ushgr 29090 df-upgr 29113 df-umgr 29114 df-uspgr 29181 df-usgr 29182 df-fusgr 29348 df-nbgr 29364 df-vtxdg 29498 df-rgr 29589 df-rusgr 29590 df-wlks 29631 df-wlkson 29632 df-trls 29724 df-trlson 29725 df-pths 29748 df-spths 29749 df-pthson 29750 df-spthson 29751 df-wwlks 29859 df-wwlksn 29860 df-wwlksnon 29861 df-wspthsn 29862 df-wspthsnon 29863 df-frgr 30287 |
This theorem is referenced by: numclwwlk7 30419 frgrregord013 30423 |
Copyright terms: Public domain | W3C validator |