MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrusgrord Structured version   Visualization version   GIF version

Theorem frrusgrord 27808
Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". Variant of frrusgrord0 27807, using the definition RegUSGraph (df-rusgr 27027). (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.)
Hypothesis
Ref Expression
frrusgrord0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frrusgrord ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))

Proof of Theorem frrusgrord
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 rusgrrgr 27032 . . . . . . 7 (𝐺RegUSGraph𝐾𝐺RegGraph𝐾)
2 frrusgrord0.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
3 eqid 2797 . . . . . . . 8 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
42, 3rgrprop 27029 . . . . . . 7 (𝐺RegGraph𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
51, 4syl 17 . . . . . 6 (𝐺RegUSGraph𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
65simprd 496 . . . . 5 (𝐺RegUSGraph𝐾 → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾)
72frrusgrord0 27807 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
86, 7syl5 34 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺RegUSGraph𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
983expb 1113 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (𝐺RegUSGraph𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
109expcom 414 . 2 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (𝐺RegUSGraph𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))))
1110impd 411 1 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺RegUSGraph𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986  wral 3107  c0 4217   class class class wbr 4968  cfv 6232  (class class class)co 7023  Fincfn 8364  1c1 10391   + caddc 10393   · cmul 10395  cmin 10723  0*cxnn0 11821  chash 13544  Vtxcvtx 26468  VtxDegcvtxdg 26934  RegGraphcrgr 27024  RegUSGraphcrusgr 27025   FriendGraph cfrgr 27723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-ac2 9738  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ifp 1056  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-disj 4937  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-oi 8827  df-dju 9183  df-card 9221  df-ac 9395  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-xnn0 11822  df-z 11836  df-uz 12098  df-rp 12244  df-xadd 12362  df-fz 12747  df-fzo 12888  df-seq 13224  df-exp 13284  df-hash 13545  df-word 13712  df-concat 13773  df-s1 13798  df-s2 14050  df-s3 14051  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-sum 14881  df-vtx 26470  df-iedg 26471  df-edg 26520  df-uhgr 26530  df-ushgr 26531  df-upgr 26554  df-umgr 26555  df-uspgr 26622  df-usgr 26623  df-fusgr 26786  df-nbgr 26802  df-vtxdg 26935  df-rgr 27026  df-rusgr 27027  df-wlks 27068  df-wlkson 27069  df-trls 27160  df-trlson 27161  df-pths 27183  df-spths 27184  df-pthson 27185  df-spthson 27186  df-wwlks 27294  df-wwlksn 27295  df-wwlksnon 27296  df-wspthsn 27297  df-wspthsnon 27298  df-frgr 27724
This theorem is referenced by:  numclwwlk7  27858  frgrregord013  27862
  Copyright terms: Public domain W3C validator