|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > frrusgrord | Structured version Visualization version GIF version | ||
| Description: If a nonempty finite friendship graph is k-regular, its order is k(k-1)+1. This corresponds to claim 3 in [Huneke] p. 2: "Next we claim that the number n of vertices in G is exactly k(k-1)+1.". Variant of frrusgrord0 30359, using the definition RegUSGraph (df-rusgr 29576). (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) | 
| Ref | Expression | 
|---|---|
| frrusgrord0.v | ⊢ 𝑉 = (Vtx‘𝐺) | 
| Ref | Expression | 
|---|---|
| frrusgrord | ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rusgrrgr 29581 | . . . . . . 7 ⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 RegGraph 𝐾) | |
| 2 | frrusgrord0.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | eqid 2737 | . . . . . . . 8 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 4 | 2, 3 | rgrprop 29578 | . . . . . . 7 ⊢ (𝐺 RegGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) | 
| 5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝐺 RegUSGraph 𝐾 → (𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) | 
| 6 | 5 | simprd 495 | . . . . 5 ⊢ (𝐺 RegUSGraph 𝐾 → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) | 
| 7 | 2 | frrusgrord0 30359 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) | 
| 8 | 6, 7 | syl5 34 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) | 
| 9 | 8 | 3expb 1121 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ (𝑉 ∈ Fin ∧ 𝑉 ≠ ∅)) → (𝐺 RegUSGraph 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) | 
| 10 | 9 | expcom 413 | . 2 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FriendGraph → (𝐺 RegUSGraph 𝐾 → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1)))) | 
| 11 | 10 | impd 410 | 1 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((𝐺 ∈ FriendGraph ∧ 𝐺 RegUSGraph 𝐾) → (♯‘𝑉) = ((𝐾 · (𝐾 − 1)) + 1))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∅c0 4333 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 1c1 11156 + caddc 11158 · cmul 11160 − cmin 11492 ℕ0*cxnn0 12599 ♯chash 14369 Vtxcvtx 29013 VtxDegcvtxdg 29483 RegGraph crgr 29573 RegUSGraph crusgr 29574 FriendGraph cfrgr 30277 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-ac2 10503 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-dju 9941 df-card 9979 df-ac 10156 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-rp 13035 df-xadd 13155 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-s2 14887 df-s3 14888 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-sum 15723 df-vtx 29015 df-iedg 29016 df-edg 29065 df-uhgr 29075 df-ushgr 29076 df-upgr 29099 df-umgr 29100 df-uspgr 29167 df-usgr 29168 df-fusgr 29334 df-nbgr 29350 df-vtxdg 29484 df-rgr 29575 df-rusgr 29576 df-wlks 29617 df-wlkson 29618 df-trls 29710 df-trlson 29711 df-pths 29734 df-spths 29735 df-pthson 29736 df-spthson 29737 df-wwlks 29850 df-wwlksn 29851 df-wwlksnon 29852 df-wspthsn 29853 df-wspthsnon 29854 df-frgr 30278 | 
| This theorem is referenced by: numclwwlk7 30410 frgrregord013 30414 | 
| Copyright terms: Public domain | W3C validator |