|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > s6eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a length 6 word. (Contributed by Mario Carneiro, 27-Feb-2016.) | 
| Ref | Expression | 
|---|---|
| s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) | 
| s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) | 
| s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) | 
| s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) | 
| s5eqd.5 | ⊢ (𝜑 → 𝐸 = 𝑅) | 
| s6eqd.6 | ⊢ (𝜑 → 𝐹 = 𝑆) | 
| Ref | Expression | 
|---|---|
| s6eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆”〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
| 2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
| 3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
| 4 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
| 5 | s5eqd.5 | . . . 4 ⊢ (𝜑 → 𝐸 = 𝑅) | |
| 6 | 1, 2, 3, 4, 5 | s5eqd 14905 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸”〉 = 〈“𝑁𝑂𝑃𝑄𝑅”〉) | 
| 7 | s6eqd.6 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝑆) | |
| 8 | 7 | s1eqd 14639 | . . 3 ⊢ (𝜑 → 〈“𝐹”〉 = 〈“𝑆”〉) | 
| 9 | 6, 8 | oveq12d 7449 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷𝐸”〉 ++ 〈“𝐹”〉) = (〈“𝑁𝑂𝑃𝑄𝑅”〉 ++ 〈“𝑆”〉)) | 
| 10 | df-s6 14891 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = (〈“𝐴𝐵𝐶𝐷𝐸”〉 ++ 〈“𝐹”〉) | |
| 11 | df-s6 14891 | . 2 ⊢ 〈“𝑁𝑂𝑃𝑄𝑅𝑆”〉 = (〈“𝑁𝑂𝑃𝑄𝑅”〉 ++ 〈“𝑆”〉) | |
| 12 | 9, 10, 11 | 3eqtr4g 2802 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆”〉) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7431 ++ cconcat 14608 〈“cs1 14633 〈“cs5 14883 〈“cs6 14884 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-s1 14634 df-s2 14887 df-s3 14888 df-s4 14889 df-s5 14890 df-s6 14891 | 
| This theorem is referenced by: s7eqd 14907 | 
| Copyright terms: Public domain | W3C validator |