MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s7eqd Structured version   Visualization version   GIF version

Theorem s7eqd 14815
Description: Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
s4eqd.4 (𝜑𝐷 = 𝑄)
s5eqd.5 (𝜑𝐸 = 𝑅)
s6eqd.6 (𝜑𝐹 = 𝑆)
s7eqd.6 (𝜑𝐺 = 𝑇)
Assertion
Ref Expression
s7eqd (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩)

Proof of Theorem s7eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
3 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
4 s4eqd.4 . . . 4 (𝜑𝐷 = 𝑄)
5 s5eqd.5 . . . 4 (𝜑𝐸 = 𝑅)
6 s6eqd.6 . . . 4 (𝜑𝐹 = 𝑆)
71, 2, 3, 4, 5, 6s6eqd 14814 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩)
8 s7eqd.6 . . . 4 (𝜑𝐺 = 𝑇)
98s1eqd 14547 . . 3 (𝜑 → ⟨“𝐺”⟩ = ⟨“𝑇”⟩)
107, 9oveq12d 7423 . 2 (𝜑 → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ++ ⟨“𝐺”⟩) = (⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩ ++ ⟨“𝑇”⟩))
11 df-s7 14800 . 2 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ++ ⟨“𝐺”⟩)
12 df-s7 14800 . 2 ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩ = (⟨“𝑁𝑂𝑃𝑄𝑅𝑆”⟩ ++ ⟨“𝑇”⟩)
1310, 11, 123eqtr4g 2797 1 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  (class class class)co 7405   ++ cconcat 14516  ⟨“cs1 14541  ⟨“cs6 14792  ⟨“cs7 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7408  df-s1 14542  df-s2 14795  df-s3 14796  df-s4 14797  df-s5 14798  df-s6 14799  df-s7 14800
This theorem is referenced by:  s8eqd  14816
  Copyright terms: Public domain W3C validator