| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s7eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a length 7 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
| s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
| s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
| s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) |
| s5eqd.5 | ⊢ (𝜑 → 𝐸 = 𝑅) |
| s6eqd.6 | ⊢ (𝜑 → 𝐹 = 𝑆) |
| s7eqd.6 | ⊢ (𝜑 → 𝐺 = 𝑇) |
| Ref | Expression |
|---|---|
| s7eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
| 2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
| 3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
| 4 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
| 5 | s5eqd.5 | . . . 4 ⊢ (𝜑 → 𝐸 = 𝑅) | |
| 6 | s6eqd.6 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝑆) | |
| 7 | 1, 2, 3, 4, 5, 6 | s6eqd 14774 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆”〉) |
| 8 | s7eqd.6 | . . . 4 ⊢ (𝜑 → 𝐺 = 𝑇) | |
| 9 | 8 | s1eqd 14508 | . . 3 ⊢ (𝜑 → 〈“𝐺”〉 = 〈“𝑇”〉) |
| 10 | 7, 9 | oveq12d 7367 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) = (〈“𝑁𝑂𝑃𝑄𝑅𝑆”〉 ++ 〈“𝑇”〉)) |
| 11 | df-s7 14760 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) | |
| 12 | df-s7 14760 | . 2 ⊢ 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉 = (〈“𝑁𝑂𝑃𝑄𝑅𝑆”〉 ++ 〈“𝑇”〉) | |
| 13 | 10, 11, 12 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7349 ++ cconcat 14477 〈“cs1 14502 〈“cs6 14752 〈“cs7 14753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-s1 14503 df-s2 14755 df-s3 14756 df-s4 14757 df-s5 14758 df-s6 14759 df-s7 14760 |
| This theorem is referenced by: s8eqd 14776 |
| Copyright terms: Public domain | W3C validator |