MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s8eqd Structured version   Visualization version   GIF version

Theorem s8eqd 14835
Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
s4eqd.4 (𝜑𝐷 = 𝑄)
s5eqd.5 (𝜑𝐸 = 𝑅)
s6eqd.6 (𝜑𝐹 = 𝑆)
s7eqd.6 (𝜑𝐺 = 𝑇)
s8eqd.6 (𝜑𝐻 = 𝑈)
Assertion
Ref Expression
s8eqd (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”⟩)

Proof of Theorem s8eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
3 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
4 s4eqd.4 . . . 4 (𝜑𝐷 = 𝑄)
5 s5eqd.5 . . . 4 (𝜑𝐸 = 𝑅)
6 s6eqd.6 . . . 4 (𝜑𝐹 = 𝑆)
7 s7eqd.6 . . . 4 (𝜑𝐺 = 𝑇)
81, 2, 3, 4, 5, 6, 7s7eqd 14834 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩)
9 s8eqd.6 . . . 4 (𝜑𝐻 = 𝑈)
109s1eqd 14566 . . 3 (𝜑 → ⟨“𝐻”⟩ = ⟨“𝑈”⟩)
118, 10oveq12d 7405 . 2 (𝜑 → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ++ ⟨“𝐻”⟩) = (⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩ ++ ⟨“𝑈”⟩))
12 df-s8 14820 . 2 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ++ ⟨“𝐻”⟩)
13 df-s8 14820 . 2 ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”⟩ = (⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩ ++ ⟨“𝑈”⟩)
1411, 12, 133eqtr4g 2789 1 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  (class class class)co 7387   ++ cconcat 14535  ⟨“cs1 14560  ⟨“cs7 14812  ⟨“cs8 14813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-s1 14561  df-s2 14814  df-s3 14815  df-s4 14816  df-s5 14817  df-s6 14818  df-s7 14819  df-s8 14820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator