MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s8eqd Structured version   Visualization version   GIF version

Theorem s8eqd 14908
Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
s4eqd.4 (𝜑𝐷 = 𝑄)
s5eqd.5 (𝜑𝐸 = 𝑅)
s6eqd.6 (𝜑𝐹 = 𝑆)
s7eqd.6 (𝜑𝐺 = 𝑇)
s8eqd.6 (𝜑𝐻 = 𝑈)
Assertion
Ref Expression
s8eqd (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”⟩)

Proof of Theorem s8eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
3 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
4 s4eqd.4 . . . 4 (𝜑𝐷 = 𝑄)
5 s5eqd.5 . . . 4 (𝜑𝐸 = 𝑅)
6 s6eqd.6 . . . 4 (𝜑𝐹 = 𝑆)
7 s7eqd.6 . . . 4 (𝜑𝐺 = 𝑇)
81, 2, 3, 4, 5, 6, 7s7eqd 14907 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩)
9 s8eqd.6 . . . 4 (𝜑𝐻 = 𝑈)
109s1eqd 14639 . . 3 (𝜑 → ⟨“𝐻”⟩ = ⟨“𝑈”⟩)
118, 10oveq12d 7449 . 2 (𝜑 → (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ++ ⟨“𝐻”⟩) = (⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩ ++ ⟨“𝑈”⟩))
12 df-s8 14893 . 2 ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ++ ⟨“𝐻”⟩)
13 df-s8 14893 . 2 ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”⟩ = (⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”⟩ ++ ⟨“𝑈”⟩)
1411, 12, 133eqtr4g 2802 1 (𝜑 → ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = ⟨“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  (class class class)co 7431   ++ cconcat 14608  ⟨“cs1 14633  ⟨“cs7 14885  ⟨“cs8 14886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-s1 14634  df-s2 14887  df-s3 14888  df-s4 14889  df-s5 14890  df-s6 14891  df-s7 14892  df-s8 14893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator