![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s8eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) |
s5eqd.5 | ⊢ (𝜑 → 𝐸 = 𝑅) |
s6eqd.6 | ⊢ (𝜑 → 𝐹 = 𝑆) |
s7eqd.6 | ⊢ (𝜑 → 𝐺 = 𝑇) |
s8eqd.6 | ⊢ (𝜑 → 𝐻 = 𝑈) |
Ref | Expression |
---|---|
s8eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
4 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
5 | s5eqd.5 | . . . 4 ⊢ (𝜑 → 𝐸 = 𝑅) | |
6 | s6eqd.6 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝑆) | |
7 | s7eqd.6 | . . . 4 ⊢ (𝜑 → 𝐺 = 𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | s7eqd 14092 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉) |
9 | s8eqd.6 | . . . 4 ⊢ (𝜑 → 𝐻 = 𝑈) | |
10 | 9 | s1eqd 13764 | . . 3 ⊢ (𝜑 → 〈“𝐻”〉 = 〈“𝑈”〉) |
11 | 8, 10 | oveq12d 6994 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) = (〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉 ++ 〈“𝑈”〉)) |
12 | df-s8 14078 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) | |
13 | df-s8 14078 | . 2 ⊢ 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉 = (〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉 ++ 〈“𝑈”〉) | |
14 | 11, 12, 13 | 3eqtr4g 2839 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 (class class class)co 6976 ++ cconcat 13733 〈“cs1 13758 〈“cs7 14070 〈“cs8 14071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-iota 6152 df-fv 6196 df-ov 6979 df-s1 13759 df-s2 14072 df-s3 14073 df-s4 14074 df-s5 14075 df-s6 14076 df-s7 14077 df-s8 14078 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |