![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s8eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) |
s5eqd.5 | ⊢ (𝜑 → 𝐸 = 𝑅) |
s6eqd.6 | ⊢ (𝜑 → 𝐹 = 𝑆) |
s7eqd.6 | ⊢ (𝜑 → 𝐺 = 𝑇) |
s8eqd.6 | ⊢ (𝜑 → 𝐻 = 𝑈) |
Ref | Expression |
---|---|
s8eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
4 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
5 | s5eqd.5 | . . . 4 ⊢ (𝜑 → 𝐸 = 𝑅) | |
6 | s6eqd.6 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝑆) | |
7 | s7eqd.6 | . . . 4 ⊢ (𝜑 → 𝐺 = 𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | s7eqd 14917 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉) |
9 | s8eqd.6 | . . . 4 ⊢ (𝜑 → 𝐻 = 𝑈) | |
10 | 9 | s1eqd 14649 | . . 3 ⊢ (𝜑 → 〈“𝐻”〉 = 〈“𝑈”〉) |
11 | 8, 10 | oveq12d 7466 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) = (〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉 ++ 〈“𝑈”〉)) |
12 | df-s8 14903 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) | |
13 | df-s8 14903 | . 2 ⊢ 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉 = (〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉 ++ 〈“𝑈”〉) | |
14 | 11, 12, 13 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 (class class class)co 7448 ++ cconcat 14618 〈“cs1 14643 〈“cs7 14895 〈“cs8 14896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-s1 14644 df-s2 14897 df-s3 14898 df-s4 14899 df-s5 14900 df-s6 14901 df-s7 14902 df-s8 14903 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |