| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s8eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
| s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
| s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
| s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) |
| s5eqd.5 | ⊢ (𝜑 → 𝐸 = 𝑅) |
| s6eqd.6 | ⊢ (𝜑 → 𝐹 = 𝑆) |
| s7eqd.6 | ⊢ (𝜑 → 𝐺 = 𝑇) |
| s8eqd.6 | ⊢ (𝜑 → 𝐻 = 𝑈) |
| Ref | Expression |
|---|---|
| s8eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
| 2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
| 3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
| 4 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
| 5 | s5eqd.5 | . . . 4 ⊢ (𝜑 → 𝐸 = 𝑅) | |
| 6 | s6eqd.6 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝑆) | |
| 7 | s7eqd.6 | . . . 4 ⊢ (𝜑 → 𝐺 = 𝑇) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | s7eqd 14841 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉) |
| 9 | s8eqd.6 | . . . 4 ⊢ (𝜑 → 𝐻 = 𝑈) | |
| 10 | 9 | s1eqd 14573 | . . 3 ⊢ (𝜑 → 〈“𝐻”〉 = 〈“𝑈”〉) |
| 11 | 8, 10 | oveq12d 7408 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) = (〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉 ++ 〈“𝑈”〉)) |
| 12 | df-s8 14827 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) | |
| 13 | df-s8 14827 | . 2 ⊢ 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉 = (〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉 ++ 〈“𝑈”〉) | |
| 14 | 11, 12, 13 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7390 ++ cconcat 14542 〈“cs1 14567 〈“cs7 14819 〈“cs8 14820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-s1 14568 df-s2 14821 df-s3 14822 df-s4 14823 df-s5 14824 df-s6 14825 df-s7 14826 df-s8 14827 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |