Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s8eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
s4eqd.4 | ⊢ (𝜑 → 𝐷 = 𝑄) |
s5eqd.5 | ⊢ (𝜑 → 𝐸 = 𝑅) |
s6eqd.6 | ⊢ (𝜑 → 𝐹 = 𝑆) |
s7eqd.6 | ⊢ (𝜑 → 𝐺 = 𝑇) |
s8eqd.6 | ⊢ (𝜑 → 𝐻 = 𝑈) |
Ref | Expression |
---|---|
s8eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
4 | s4eqd.4 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝑄) | |
5 | s5eqd.5 | . . . 4 ⊢ (𝜑 → 𝐸 = 𝑅) | |
6 | s6eqd.6 | . . . 4 ⊢ (𝜑 → 𝐹 = 𝑆) | |
7 | s7eqd.6 | . . . 4 ⊢ (𝜑 → 𝐺 = 𝑇) | |
8 | 1, 2, 3, 4, 5, 6, 7 | s7eqd 14509 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉) |
9 | s8eqd.6 | . . . 4 ⊢ (𝜑 → 𝐻 = 𝑈) | |
10 | 9 | s1eqd 14234 | . . 3 ⊢ (𝜑 → 〈“𝐻”〉 = 〈“𝑈”〉) |
11 | 8, 10 | oveq12d 7273 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) = (〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉 ++ 〈“𝑈”〉)) |
12 | df-s8 14495 | . 2 ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) | |
13 | df-s8 14495 | . 2 ⊢ 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉 = (〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇”〉 ++ 〈“𝑈”〉) | |
14 | 11, 12, 13 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = 〈“𝑁𝑂𝑃𝑄𝑅𝑆𝑇𝑈”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 (class class class)co 7255 ++ cconcat 14201 〈“cs1 14228 〈“cs7 14487 〈“cs8 14488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-s1 14229 df-s2 14489 df-s3 14490 df-s4 14491 df-s5 14492 df-s6 14493 df-s7 14494 df-s8 14495 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |