MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3eq2 Structured version   Visualization version   GIF version

Theorem s3eq2 14772
Description: Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
s3eq2 (𝐵 = 𝐷 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐷𝐶”⟩)

Proof of Theorem s3eq2
StepHypRef Expression
1 eqidd 2732 . 2 (𝐵 = 𝐷𝐴 = 𝐴)
2 id 22 . 2 (𝐵 = 𝐷𝐵 = 𝐷)
3 eqidd 2732 . 2 (𝐵 = 𝐷𝐶 = 𝐶)
41, 2, 3s3eqd 14766 1 (𝐵 = 𝐷 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐷𝐶”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  ⟨“cs3 14744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-iota 6432  df-fv 6484  df-ov 7344  df-s1 14499  df-s2 14750  df-s3 14751
This theorem is referenced by:  tgcgrxfr  28491  isperp2  28688  elwwlks2ons3  29928  frgr2wwlk1  30301  frgr2wwlkeqm  30303  fusgr2wsp2nb  30306
  Copyright terms: Public domain W3C validator