| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s3eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.) |
| Ref | Expression |
|---|---|
| s3eq2 | ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2737 | . 2 ⊢ (𝐵 = 𝐷 → 𝐴 = 𝐴) | |
| 2 | id 22 | . 2 ⊢ (𝐵 = 𝐷 → 𝐵 = 𝐷) | |
| 3 | eqidd 2737 | . 2 ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐶) | |
| 4 | 1, 2, 3 | s3eqd 14888 | 1 ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈“cs3 14866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-s1 14619 df-s2 14872 df-s3 14873 |
| This theorem is referenced by: tgcgrxfr 28502 isperp2 28699 elwwlks2ons3 29942 frgr2wwlk1 30315 frgr2wwlkeqm 30317 fusgr2wsp2nb 30320 |
| Copyright terms: Public domain | W3C validator |