| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s3eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.) |
| Ref | Expression |
|---|---|
| s3eq2 | ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2734 | . 2 ⊢ (𝐵 = 𝐷 → 𝐴 = 𝐴) | |
| 2 | id 22 | . 2 ⊢ (𝐵 = 𝐷 → 𝐵 = 𝐷) | |
| 3 | eqidd 2734 | . 2 ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐶) | |
| 4 | 1, 2, 3 | s3eqd 14778 | 1 ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈“cs3 14756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-s1 14511 df-s2 14762 df-s3 14763 |
| This theorem is referenced by: tgcgrxfr 28516 isperp2 28713 elwwlks2ons3 29954 frgr2wwlk1 30330 frgr2wwlkeqm 30332 fusgr2wsp2nb 30335 |
| Copyright terms: Public domain | W3C validator |