| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s3eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.) |
| Ref | Expression |
|---|---|
| s3eq2 | ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . 2 ⊢ (𝐵 = 𝐷 → 𝐴 = 𝐴) | |
| 2 | id 22 | . 2 ⊢ (𝐵 = 𝐷 → 𝐵 = 𝐷) | |
| 3 | eqidd 2732 | . 2 ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐶) | |
| 4 | 1, 2, 3 | s3eqd 14766 | 1 ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈“cs3 14744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-s1 14499 df-s2 14750 df-s3 14751 |
| This theorem is referenced by: tgcgrxfr 28491 isperp2 28688 elwwlks2ons3 29928 frgr2wwlk1 30301 frgr2wwlkeqm 30303 fusgr2wsp2nb 30306 |
| Copyright terms: Public domain | W3C validator |