MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcieg Structured version   Visualization version   GIF version

Theorem sbcieg 3781
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) Avoid ax-10 2144, ax-12 2180. (Revised by GG, 12-Oct-2024.)
Hypothesis
Ref Expression
sbcieg.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbcieg (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem sbcieg
StepHypRef Expression
1 df-sbc 3742 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
2 sbcieg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32elabg 3632 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
41, 3bitrid 283 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {cab 2709  [wsbc 3741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-sbc 3742
This theorem is referenced by:  sbcie  3783  2nreu  4394  reuprg0  4655  rabsnif  4676  ralrnmptw  7027  ralrnmpt  7029  fpwwe2lem3  10521  nn1suc  12144  opfi1uzind  14415  mndind  18733  fgcl  23791  cfinfil  23806  csdfil  23807  supfil  23808  fin1aufil  23845  ifeqeqx  32517  nn0min  32798  bnj1452  35059  cdlemk35s  40975  cdlemk39s  40977  cdlemk42  40979  2nn0ind  42977  zindbi  42978  prproropreud  47539
  Copyright terms: Public domain W3C validator