![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcieg | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) Avoid ax-10 2137, ax-12 2171. (Revised by Gino Giotto, 12-Oct-2024.) |
Ref | Expression |
---|---|
sbcieg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcieg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3778 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | sbcieg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | elabg 3666 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
4 | 1, 3 | bitrid 282 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2709 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-sbc 3778 |
This theorem is referenced by: sbcie 3820 2nreu 4441 reuprg0 4706 rabsnif 4727 ralrnmptw 7095 ralrnmpt 7097 fpwwe2lem3 10630 nn1suc 12238 opfi1uzind 14466 mndind 18745 fgcl 23602 cfinfil 23617 csdfil 23618 supfil 23619 fin1aufil 23656 ifeqeqx 32029 nn0min 32281 bnj1452 34349 cdlemk35s 40111 cdlemk39s 40113 cdlemk42 40115 2nn0ind 41986 zindbi 41987 prproropreud 46476 |
Copyright terms: Public domain | W3C validator |