MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcieg Structured version   Visualization version   GIF version

Theorem sbcieg 3777
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) Avoid ax-10 2146, ax-12 2182. (Revised by GG, 12-Oct-2024.)
Hypothesis
Ref Expression
sbcieg.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbcieg (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem sbcieg
StepHypRef Expression
1 df-sbc 3738 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
2 sbcieg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32elabg 3628 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
41, 3bitrid 283 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  {cab 2711  [wsbc 3737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-sbc 3738
This theorem is referenced by:  sbcie  3779  2nreu  4393  reuprg0  4654  rabsnif  4675  ralrnmptw  7033  ralrnmpt  7035  fpwwe2lem3  10531  nn1suc  12154  opfi1uzind  14420  mndind  18738  fgcl  23794  cfinfil  23809  csdfil  23810  supfil  23811  fin1aufil  23848  ifeqeqx  32524  nn0min  32808  bnj1452  35085  cdlemk35s  41056  cdlemk39s  41058  cdlemk42  41060  2nn0ind  43062  zindbi  43063  prproropreud  47633
  Copyright terms: Public domain W3C validator