| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcieg | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| sbcieg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcieg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3757 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | sbcieg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | elabg 3646 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 |
| This theorem is referenced by: sbcie 3798 2nreu 4410 reuprg0 4669 rabsnif 4690 ralrnmptw 7069 ralrnmpt 7071 fpwwe2lem3 10593 nn1suc 12215 opfi1uzind 14483 mndind 18762 fgcl 23772 cfinfil 23787 csdfil 23788 supfil 23789 fin1aufil 23826 ifeqeqx 32478 nn0min 32752 bnj1452 35049 cdlemk35s 40938 cdlemk39s 40940 cdlemk42 40942 2nn0ind 42941 zindbi 42942 prproropreud 47514 |
| Copyright terms: Public domain | W3C validator |