MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcieg Structured version   Visualization version   GIF version

Theorem sbcieg 3793
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 12-Oct-2024.)
Hypothesis
Ref Expression
sbcieg.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbcieg (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem sbcieg
StepHypRef Expression
1 df-sbc 3754 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
2 sbcieg.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32elabg 3643 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
41, 3bitrid 283 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707  [wsbc 3753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-sbc 3754
This theorem is referenced by:  sbcie  3795  2nreu  4407  reuprg0  4666  rabsnif  4687  ralrnmptw  7066  ralrnmpt  7068  fpwwe2lem3  10586  nn1suc  12208  opfi1uzind  14476  mndind  18755  fgcl  23765  cfinfil  23780  csdfil  23781  supfil  23782  fin1aufil  23819  ifeqeqx  32471  nn0min  32745  bnj1452  35042  cdlemk35s  40931  cdlemk39s  40933  cdlemk42  40935  2nn0ind  42934  zindbi  42935  prproropreud  47510
  Copyright terms: Public domain W3C validator