Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcieg | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) Avoid ax-10 2139, ax-12 2173. (Revised by Gino Giotto, 12-Oct-2024.) |
Ref | Expression |
---|---|
sbcieg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcieg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3712 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
2 | sbcieg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | elabg 3600 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
4 | 1, 3 | syl5bb 282 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: sbcie 3754 2nreu 4372 reuprg0 4635 rabsnif 4656 ralrnmptw 6952 ralrnmpt 6954 fpwwe2lem3 10320 nn1suc 11925 opfi1uzind 14143 mndind 18381 fgcl 22937 cfinfil 22952 csdfil 22953 supfil 22954 fin1aufil 22991 ifeqeqx 30786 nn0min 31036 bnj1452 32932 cdlemk35s 38878 cdlemk39s 38880 cdlemk42 38882 2nn0ind 40683 zindbi 40684 prproropreud 44849 |
Copyright terms: Public domain | W3C validator |