| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcieg | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) Avoid ax-10 2142, ax-12 2178. (Revised by GG, 12-Oct-2024.) |
| Ref | Expression |
|---|---|
| sbcieg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbcieg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sbc 3745 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
| 2 | sbcieg.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | elabg 3634 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 4 | 1, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3745 |
| This theorem is referenced by: sbcie 3786 2nreu 4397 reuprg0 4656 rabsnif 4677 ralrnmptw 7032 ralrnmpt 7034 fpwwe2lem3 10546 nn1suc 12168 opfi1uzind 14436 mndind 18720 fgcl 23781 cfinfil 23796 csdfil 23797 supfil 23798 fin1aufil 23835 ifeqeqx 32504 nn0min 32778 bnj1452 35018 cdlemk35s 40916 cdlemk39s 40918 cdlemk42 40920 2nn0ind 42918 zindbi 42919 prproropreud 47494 |
| Copyright terms: Public domain | W3C validator |