MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqerlem Structured version   Visualization version   GIF version

Theorem eqerlem 8532
Description: Lemma for eqer 8533. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
eqer.1 (𝑥 = 𝑦𝐴 = 𝐵)
eqer.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
Assertion
Ref Expression
eqerlem (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦   𝑥,𝑧,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑤)   𝐵(𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem eqerlem
StepHypRef Expression
1 eqer.2 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
21brabsb 5444 . 2 (𝑧𝑅𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵)
3 nfcsb1v 3857 . . . . 5 𝑥𝑧 / 𝑥𝐴
4 nfcsb1v 3857 . . . . 5 𝑥𝑤 / 𝑥𝐴
53, 4nfeq 2920 . . . 4 𝑥𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴
6 nfv 1917 . . . . . . 7 𝑦 𝐴 = 𝑤 / 𝑥𝐴
7 vex 3436 . . . . . . . . . 10 𝑦 ∈ V
8 eqer.1 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐵)
97, 8csbie 3868 . . . . . . . . 9 𝑦 / 𝑥𝐴 = 𝐵
10 csbeq1 3835 . . . . . . . . 9 (𝑦 = 𝑤𝑦 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
119, 10eqtr3id 2792 . . . . . . . 8 (𝑦 = 𝑤𝐵 = 𝑤 / 𝑥𝐴)
1211eqeq2d 2749 . . . . . . 7 (𝑦 = 𝑤 → (𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴))
136, 12sbciegf 3755 . . . . . 6 (𝑤 ∈ V → ([𝑤 / 𝑦]𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴))
1413elv 3438 . . . . 5 ([𝑤 / 𝑦]𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴)
15 csbeq1a 3846 . . . . . 6 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
1615eqeq1d 2740 . . . . 5 (𝑥 = 𝑧 → (𝐴 = 𝑤 / 𝑥𝐴𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
1714, 16bitrid 282 . . . 4 (𝑥 = 𝑧 → ([𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
185, 17sbciegf 3755 . . 3 (𝑧 ∈ V → ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
1918elv 3438 . 2 ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
202, 19bitri 274 1 (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  Vcvv 3432  [wsbc 3716  csb 3832   class class class wbr 5074  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137
This theorem is referenced by:  eqer  8533
  Copyright terms: Public domain W3C validator