![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqerlem | Structured version Visualization version GIF version |
Description: Lemma for eqer 8779. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
eqer.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
eqer.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} |
Ref | Expression |
---|---|
eqerlem | ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} | |
2 | 1 | brabsb 5540 | . 2 ⊢ (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵) |
3 | nfcsb1v 3932 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐴 | |
4 | nfcsb1v 3932 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐴 | |
5 | 3, 4 | nfeq 2916 | . . . 4 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 |
6 | nfv 1911 | . . . . . . 7 ⊢ Ⅎ𝑦 𝐴 = ⦋𝑤 / 𝑥⦌𝐴 | |
7 | vex 3481 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
8 | eqer.1 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
9 | 7, 8 | csbie 3943 | . . . . . . . . 9 ⊢ ⦋𝑦 / 𝑥⦌𝐴 = 𝐵 |
10 | csbeq1 3910 | . . . . . . . . 9 ⊢ (𝑦 = 𝑤 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | |
11 | 9, 10 | eqtr3id 2788 | . . . . . . . 8 ⊢ (𝑦 = 𝑤 → 𝐵 = ⦋𝑤 / 𝑥⦌𝐴) |
12 | 11 | eqeq2d 2745 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → (𝐴 = 𝐵 ↔ 𝐴 = ⦋𝑤 / 𝑥⦌𝐴)) |
13 | 6, 12 | sbciegf 3830 | . . . . . 6 ⊢ (𝑤 ∈ V → ([𝑤 / 𝑦]𝐴 = 𝐵 ↔ 𝐴 = ⦋𝑤 / 𝑥⦌𝐴)) |
14 | 13 | elv 3482 | . . . . 5 ⊢ ([𝑤 / 𝑦]𝐴 = 𝐵 ↔ 𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
15 | csbeq1a 3921 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
16 | 15 | eqeq1d 2736 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴)) |
17 | 14, 16 | bitrid 283 | . . . 4 ⊢ (𝑥 = 𝑧 → ([𝑤 / 𝑦]𝐴 = 𝐵 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴)) |
18 | 5, 17 | sbciegf 3830 | . . 3 ⊢ (𝑧 ∈ V → ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴)) |
19 | 18 | elv 3482 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
20 | 2, 19 | bitri 275 | 1 ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 Vcvv 3477 [wsbc 3790 ⦋csb 3907 class class class wbr 5147 {copab 5209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 |
This theorem is referenced by: eqer 8779 |
Copyright terms: Public domain | W3C validator |