MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqerlem Structured version   Visualization version   GIF version

Theorem eqerlem 8425
Description: Lemma for eqer 8426. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
eqer.1 (𝑥 = 𝑦𝐴 = 𝐵)
eqer.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
Assertion
Ref Expression
eqerlem (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦   𝑥,𝑧,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑤)   𝐵(𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem eqerlem
StepHypRef Expression
1 eqer.2 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
21brabsb 5412 . 2 (𝑧𝑅𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵)
3 nfcsb1v 3836 . . . . 5 𝑥𝑧 / 𝑥𝐴
4 nfcsb1v 3836 . . . . 5 𝑥𝑤 / 𝑥𝐴
53, 4nfeq 2917 . . . 4 𝑥𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴
6 nfv 1922 . . . . . . 7 𝑦 𝐴 = 𝑤 / 𝑥𝐴
7 vex 3412 . . . . . . . . . 10 𝑦 ∈ V
8 eqer.1 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐵)
97, 8csbie 3847 . . . . . . . . 9 𝑦 / 𝑥𝐴 = 𝐵
10 csbeq1 3814 . . . . . . . . 9 (𝑦 = 𝑤𝑦 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
119, 10eqtr3id 2792 . . . . . . . 8 (𝑦 = 𝑤𝐵 = 𝑤 / 𝑥𝐴)
1211eqeq2d 2748 . . . . . . 7 (𝑦 = 𝑤 → (𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴))
136, 12sbciegf 3733 . . . . . 6 (𝑤 ∈ V → ([𝑤 / 𝑦]𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴))
1413elv 3414 . . . . 5 ([𝑤 / 𝑦]𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴)
15 csbeq1a 3825 . . . . . 6 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
1615eqeq1d 2739 . . . . 5 (𝑥 = 𝑧 → (𝐴 = 𝑤 / 𝑥𝐴𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
1714, 16syl5bb 286 . . . 4 (𝑥 = 𝑧 → ([𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
185, 17sbciegf 3733 . . 3 (𝑧 ∈ V → ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
1918elv 3414 . 2 ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
202, 19bitri 278 1 (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  Vcvv 3408  [wsbc 3694  csb 3811   class class class wbr 5053  {copab 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116
This theorem is referenced by:  eqer  8426
  Copyright terms: Public domain W3C validator