Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem6 Structured version   Visualization version   GIF version

Theorem aomclem6 43055
Description: Lemma for dfac11 43058. Transfinite induction, close over 𝑧. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem6.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem6.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem6.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem6.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem6.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem6.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem6.h 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
aomclem6.a (𝜑𝐴 ∈ On)
aomclem6.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem6 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑,𝑧   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑   𝐴,𝑎,𝑏,𝑐,𝑑,𝑧   𝐻,𝑎,𝑏,𝑐,𝑑,𝑧   𝐺,𝑑
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐)   𝐻(𝑦)

Proof of Theorem aomclem6
StepHypRef Expression
1 ssid 3972 . 2 𝐴𝐴
2 aomclem6.a . . . 4 (𝜑𝐴 ∈ On)
32adantr 480 . . 3 ((𝜑𝐴𝐴) → 𝐴 ∈ On)
4 sseq1 3975 . . . . . 6 (𝑐 = 𝑑 → (𝑐𝐴𝑑𝐴))
54anbi2d 630 . . . . 5 (𝑐 = 𝑑 → ((𝜑𝑐𝐴) ↔ (𝜑𝑑𝐴)))
6 fveq2 6861 . . . . . 6 (𝑐 = 𝑑 → (𝐻𝑐) = (𝐻𝑑))
7 fveq2 6861 . . . . . 6 (𝑐 = 𝑑 → (𝑅1𝑐) = (𝑅1𝑑))
86, 7weeq12d 5630 . . . . 5 (𝑐 = 𝑑 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑑) We (𝑅1𝑑)))
95, 8imbi12d 344 . . . 4 (𝑐 = 𝑑 → (((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐)) ↔ ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))))
10 sseq1 3975 . . . . . 6 (𝑐 = 𝐴 → (𝑐𝐴𝐴𝐴))
1110anbi2d 630 . . . . 5 (𝑐 = 𝐴 → ((𝜑𝑐𝐴) ↔ (𝜑𝐴𝐴)))
12 fveq2 6861 . . . . . 6 (𝑐 = 𝐴 → (𝐻𝑐) = (𝐻𝐴))
13 fveq2 6861 . . . . . 6 (𝑐 = 𝐴 → (𝑅1𝑐) = (𝑅1𝐴))
1412, 13weeq12d 5630 . . . . 5 (𝑐 = 𝐴 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝐴) We (𝑅1𝐴)))
1511, 14imbi12d 344 . . . 4 (𝑐 = 𝐴 → (((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐)) ↔ ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴))))
16 aomclem6.b . . . . . . . . . . . . . 14 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
17 aomclem6.c . . . . . . . . . . . . . 14 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
18 aomclem6.d . . . . . . . . . . . . . 14 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
19 aomclem6.e . . . . . . . . . . . . . 14 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
20 aomclem6.f . . . . . . . . . . . . . 14 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
21 aomclem6.g . . . . . . . . . . . . . 14 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
22 dmeq 5870 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐻𝑐) → dom 𝑧 = dom (𝐻𝑐))
2322adantl 481 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 = dom (𝐻𝑐))
24 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝑐 ∈ On)
25 onss 7764 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ On → 𝑐 ⊆ On)
26 aomclem6.h . . . . . . . . . . . . . . . . . . 19 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
2726tfr1 8368 . . . . . . . . . . . . . . . . . 18 𝐻 Fn On
28 fnssres 6644 . . . . . . . . . . . . . . . . . 18 ((𝐻 Fn On ∧ 𝑐 ⊆ On) → (𝐻𝑐) Fn 𝑐)
2927, 28mpan 690 . . . . . . . . . . . . . . . . 17 (𝑐 ⊆ On → (𝐻𝑐) Fn 𝑐)
30 fndm 6624 . . . . . . . . . . . . . . . . 17 ((𝐻𝑐) Fn 𝑐 → dom (𝐻𝑐) = 𝑐)
3124, 25, 29, 304syl 19 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom (𝐻𝑐) = 𝑐)
3223, 31eqtrd 2765 . . . . . . . . . . . . . . 15 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 = 𝑐)
3332, 24eqeltrd 2829 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 ∈ On)
3432eleq2d 2815 . . . . . . . . . . . . . . . . . 18 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑎 ∈ dom 𝑧𝑎𝑐))
3534biimpa 476 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎𝑐)
36 simpll2 1214 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)))
37 simpl3l 1229 . . . . . . . . . . . . . . . . . 18 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝜑)
3837adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝜑)
39 onelss 6377 . . . . . . . . . . . . . . . . . . . 20 (dom 𝑧 ∈ On → (𝑎 ∈ dom 𝑧𝑎 ⊆ dom 𝑧))
4033, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑎 ∈ dom 𝑧𝑎 ⊆ dom 𝑧))
4140imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎 ⊆ dom 𝑧)
42 simpl3r 1230 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝑐𝐴)
4332, 42eqsstrd 3984 . . . . . . . . . . . . . . . . . . 19 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧𝐴)
4443adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → dom 𝑧𝐴)
4541, 44sstrd 3960 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎𝐴)
46 sseq1 3975 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝑑𝐴𝑎𝐴))
4746anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑎 → ((𝜑𝑑𝐴) ↔ (𝜑𝑎𝐴)))
48 fveq2 6861 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝐻𝑑) = (𝐻𝑎))
49 fveq2 6861 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝑅1𝑑) = (𝑅1𝑎))
5048, 49weeq12d 5630 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑎 → ((𝐻𝑑) We (𝑅1𝑑) ↔ (𝐻𝑎) We (𝑅1𝑎)))
5147, 50imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑎 → (((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ↔ ((𝜑𝑎𝐴) → (𝐻𝑎) We (𝑅1𝑎))))
5251rspcva 3589 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑐 ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))) → ((𝜑𝑎𝐴) → (𝐻𝑎) We (𝑅1𝑎)))
5352imp 406 . . . . . . . . . . . . . . . . 17 (((𝑎𝑐 ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))) ∧ (𝜑𝑎𝐴)) → (𝐻𝑎) We (𝑅1𝑎))
5435, 36, 38, 45, 53syl22anc 838 . . . . . . . . . . . . . . . 16 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝐻𝑎) We (𝑅1𝑎))
55 fveq1 6860 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐻𝑐) → (𝑧𝑎) = ((𝐻𝑐)‘𝑎))
5655ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) = ((𝐻𝑐)‘𝑎))
57 fvres 6880 . . . . . . . . . . . . . . . . . . 19 (𝑎𝑐 → ((𝐻𝑐)‘𝑎) = (𝐻𝑎))
5835, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ((𝐻𝑐)‘𝑎) = (𝐻𝑎))
5956, 58eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) = (𝐻𝑎))
60 weeq1 5628 . . . . . . . . . . . . . . . . 17 ((𝑧𝑎) = (𝐻𝑎) → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝐻𝑎) We (𝑅1𝑎)))
6159, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝐻𝑎) We (𝑅1𝑎)))
6254, 61mpbird 257 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) We (𝑅1𝑎))
6362ralrimiva 3126 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
6437, 2syl 17 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐴 ∈ On)
65 aomclem6.y . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
6637, 65syl 17 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
6716, 17, 18, 19, 20, 21, 33, 63, 64, 43, 66aomclem5 43054 . . . . . . . . . . . . 13 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐺 We (𝑅1‘dom 𝑧))
6832fveq2d 6865 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑅1‘dom 𝑧) = (𝑅1𝑐))
69 weeq2 5629 . . . . . . . . . . . . . 14 ((𝑅1‘dom 𝑧) = (𝑅1𝑐) → (𝐺 We (𝑅1‘dom 𝑧) ↔ 𝐺 We (𝑅1𝑐)))
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝐺 We (𝑅1‘dom 𝑧) ↔ 𝐺 We (𝑅1𝑐)))
7167, 70mpbid 232 . . . . . . . . . . . 12 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐺 We (𝑅1𝑐))
7271ex 412 . . . . . . . . . . 11 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)))
7372alrimiv 1927 . . . . . . . . . 10 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ∀𝑧(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)))
74 nfv 1914 . . . . . . . . . . 11 𝑑(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐))
75 nfv 1914 . . . . . . . . . . . 12 𝑧 𝑑 = (𝐻𝑐)
76 nfsbc1v 3776 . . . . . . . . . . . 12 𝑧[𝑑 / 𝑧]𝐺 We (𝑅1𝑐)
7775, 76nfim 1896 . . . . . . . . . . 11 𝑧(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
78 eqeq1 2734 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝑧 = (𝐻𝑐) ↔ 𝑑 = (𝐻𝑐)))
79 sbceq1a 3767 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝐺 We (𝑅1𝑐) ↔ [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
8078, 79imbi12d 344 . . . . . . . . . . 11 (𝑧 = 𝑑 → ((𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)) ↔ (𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐))))
8174, 77, 80cbvalv1 2339 . . . . . . . . . 10 (∀𝑧(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)) ↔ ∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
8273, 81sylib 218 . . . . . . . . 9 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
83 nfsbc1v 3776 . . . . . . . . . 10 𝑑[(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐)
84 fnfun 6621 . . . . . . . . . . . 12 (𝐻 Fn On → Fun 𝐻)
8527, 84ax-mp 5 . . . . . . . . . . 11 Fun 𝐻
86 vex 3454 . . . . . . . . . . 11 𝑐 ∈ V
87 resfunexg 7192 . . . . . . . . . . 11 ((Fun 𝐻𝑐 ∈ V) → (𝐻𝑐) ∈ V)
8885, 86, 87mp2an 692 . . . . . . . . . 10 (𝐻𝑐) ∈ V
89 sbceq1a 3767 . . . . . . . . . 10 (𝑑 = (𝐻𝑐) → ([𝑑 / 𝑧]𝐺 We (𝑅1𝑐) ↔ [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
9083, 88, 89ceqsal 3488 . . . . . . . . 9 (∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)) ↔ [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
9182, 90sylib 218 . . . . . . . 8 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
92 sbccow 3779 . . . . . . . 8 ([(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐) ↔ [(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐))
9391, 92sylib 218 . . . . . . 7 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → [(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐))
94 nfcsb1v 3889 . . . . . . . . . 10 𝑧(𝐻𝑐) / 𝑧𝐺
95 nfcv 2892 . . . . . . . . . 10 𝑧(𝑅1𝑐)
9694, 95nfwe 5616 . . . . . . . . 9 𝑧(𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)
97 csbeq1a 3879 . . . . . . . . . 10 (𝑧 = (𝐻𝑐) → 𝐺 = (𝐻𝑐) / 𝑧𝐺)
98 weeq1 5628 . . . . . . . . . 10 (𝐺 = (𝐻𝑐) / 𝑧𝐺 → (𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
9997, 98syl 17 . . . . . . . . 9 (𝑧 = (𝐻𝑐) → (𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
10096, 99sbciegf 3795 . . . . . . . 8 ((𝐻𝑐) ∈ V → ([(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
10188, 100ax-mp 5 . . . . . . 7 ([(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐))
10293, 101sylib 218 . . . . . 6 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐))
103 recsval 8375 . . . . . . . . 9 (𝑐 ∈ On → (recs((𝑧 ∈ V ↦ 𝐺))‘𝑐) = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐)))
10426fveq1i 6862 . . . . . . . . 9 (𝐻𝑐) = (recs((𝑧 ∈ V ↦ 𝐺))‘𝑐)
105 fvex 6874 . . . . . . . . . . . . . . 15 (𝑅1‘dom 𝑧) ∈ V
106105, 105xpex 7732 . . . . . . . . . . . . . 14 ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)) ∈ V
107106inex2 5276 . . . . . . . . . . . . 13 (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) ∈ V
10821, 107eqeltri 2825 . . . . . . . . . . . 12 𝐺 ∈ V
109108csbex 5269 . . . . . . . . . . 11 (𝐻𝑐) / 𝑧𝐺 ∈ V
110 eqid 2730 . . . . . . . . . . . 12 (𝑧 ∈ V ↦ 𝐺) = (𝑧 ∈ V ↦ 𝐺)
111110fvmpts 6974 . . . . . . . . . . 11 (((𝐻𝑐) ∈ V ∧ (𝐻𝑐) / 𝑧𝐺 ∈ V) → ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = (𝐻𝑐) / 𝑧𝐺)
11288, 109, 111mp2an 692 . . . . . . . . . 10 ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = (𝐻𝑐) / 𝑧𝐺
11326reseq1i 5949 . . . . . . . . . . 11 (𝐻𝑐) = (recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐)
114113fveq2i 6864 . . . . . . . . . 10 ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐))
115112, 114eqtr3i 2755 . . . . . . . . 9 (𝐻𝑐) / 𝑧𝐺 = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐))
116103, 104, 1153eqtr4g 2790 . . . . . . . 8 (𝑐 ∈ On → (𝐻𝑐) = (𝐻𝑐) / 𝑧𝐺)
117 weeq1 5628 . . . . . . . 8 ((𝐻𝑐) = (𝐻𝑐) / 𝑧𝐺 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
118116, 117syl 17 . . . . . . 7 (𝑐 ∈ On → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
1191183ad2ant1 1133 . . . . . 6 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
120102, 119mpbird 257 . . . . 5 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝐻𝑐) We (𝑅1𝑐))
1211203exp 1119 . . . 4 (𝑐 ∈ On → (∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) → ((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐))))
1229, 15, 121tfis3 7837 . . 3 (𝐴 ∈ On → ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴)))
1233, 122mpcom 38 . 2 ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴))
1241, 123mpan2 691 1 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  [wsbc 3756  csb 3865  cdif 3914  cin 3916  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566  {csn 4592   cuni 4874   cint 4913   class class class wbr 5110  {copab 5172  cmpt 5191   E cep 5540   We wwe 5593   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Oncon0 6335  suc csuc 6337  Fun wfun 6508   Fn wfn 6509  cfv 6514  recscrecs 8342  Fincfn 8921  supcsup 9398  𝑅1cr1 9722  rankcrnk 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-map 8804  df-en 8922  df-fin 8925  df-sup 9400  df-r1 9724  df-rank 9725
This theorem is referenced by:  aomclem7  43056
  Copyright terms: Public domain W3C validator