Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem6 Structured version   Visualization version   GIF version

Theorem aomclem6 40587
Description: Lemma for dfac11 40590. Transfinite induction, close over 𝑧. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem6.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem6.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem6.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem6.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem6.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem6.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem6.h 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
aomclem6.a (𝜑𝐴 ∈ On)
aomclem6.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem6 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑,𝑧   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑   𝐴,𝑎,𝑏,𝑐,𝑑,𝑧   𝐻,𝑎,𝑏,𝑐,𝑑,𝑧   𝐺,𝑑
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐)   𝐻(𝑦)

Proof of Theorem aomclem6
StepHypRef Expression
1 ssid 3923 . 2 𝐴𝐴
2 aomclem6.a . . . 4 (𝜑𝐴 ∈ On)
32adantr 484 . . 3 ((𝜑𝐴𝐴) → 𝐴 ∈ On)
4 sseq1 3926 . . . . . 6 (𝑐 = 𝑑 → (𝑐𝐴𝑑𝐴))
54anbi2d 632 . . . . 5 (𝑐 = 𝑑 → ((𝜑𝑐𝐴) ↔ (𝜑𝑑𝐴)))
6 fveq2 6717 . . . . . 6 (𝑐 = 𝑑 → (𝐻𝑐) = (𝐻𝑑))
7 fveq2 6717 . . . . . 6 (𝑐 = 𝑑 → (𝑅1𝑐) = (𝑅1𝑑))
86, 7weeq12d 40568 . . . . 5 (𝑐 = 𝑑 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑑) We (𝑅1𝑑)))
95, 8imbi12d 348 . . . 4 (𝑐 = 𝑑 → (((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐)) ↔ ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))))
10 sseq1 3926 . . . . . 6 (𝑐 = 𝐴 → (𝑐𝐴𝐴𝐴))
1110anbi2d 632 . . . . 5 (𝑐 = 𝐴 → ((𝜑𝑐𝐴) ↔ (𝜑𝐴𝐴)))
12 fveq2 6717 . . . . . 6 (𝑐 = 𝐴 → (𝐻𝑐) = (𝐻𝐴))
13 fveq2 6717 . . . . . 6 (𝑐 = 𝐴 → (𝑅1𝑐) = (𝑅1𝐴))
1412, 13weeq12d 40568 . . . . 5 (𝑐 = 𝐴 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝐴) We (𝑅1𝐴)))
1511, 14imbi12d 348 . . . 4 (𝑐 = 𝐴 → (((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐)) ↔ ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴))))
16 aomclem6.b . . . . . . . . . . . . . 14 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
17 aomclem6.c . . . . . . . . . . . . . 14 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
18 aomclem6.d . . . . . . . . . . . . . 14 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
19 aomclem6.e . . . . . . . . . . . . . 14 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
20 aomclem6.f . . . . . . . . . . . . . 14 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
21 aomclem6.g . . . . . . . . . . . . . 14 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
22 dmeq 5772 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐻𝑐) → dom 𝑧 = dom (𝐻𝑐))
2322adantl 485 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 = dom (𝐻𝑐))
24 simpl1 1193 . . . . . . . . . . . . . . . . 17 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝑐 ∈ On)
25 onss 7568 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ On → 𝑐 ⊆ On)
26 aomclem6.h . . . . . . . . . . . . . . . . . . 19 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
2726tfr1 8133 . . . . . . . . . . . . . . . . . 18 𝐻 Fn On
28 fnssres 6500 . . . . . . . . . . . . . . . . . 18 ((𝐻 Fn On ∧ 𝑐 ⊆ On) → (𝐻𝑐) Fn 𝑐)
2927, 28mpan 690 . . . . . . . . . . . . . . . . 17 (𝑐 ⊆ On → (𝐻𝑐) Fn 𝑐)
30 fndm 6481 . . . . . . . . . . . . . . . . 17 ((𝐻𝑐) Fn 𝑐 → dom (𝐻𝑐) = 𝑐)
3124, 25, 29, 304syl 19 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom (𝐻𝑐) = 𝑐)
3223, 31eqtrd 2777 . . . . . . . . . . . . . . 15 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 = 𝑐)
3332, 24eqeltrd 2838 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 ∈ On)
3432eleq2d 2823 . . . . . . . . . . . . . . . . . 18 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑎 ∈ dom 𝑧𝑎𝑐))
3534biimpa 480 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎𝑐)
36 simpll2 1215 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)))
37 simpl3l 1230 . . . . . . . . . . . . . . . . . 18 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝜑)
3837adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝜑)
39 onelss 6255 . . . . . . . . . . . . . . . . . . . 20 (dom 𝑧 ∈ On → (𝑎 ∈ dom 𝑧𝑎 ⊆ dom 𝑧))
4033, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑎 ∈ dom 𝑧𝑎 ⊆ dom 𝑧))
4140imp 410 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎 ⊆ dom 𝑧)
42 simpl3r 1231 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝑐𝐴)
4332, 42eqsstrd 3939 . . . . . . . . . . . . . . . . . . 19 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧𝐴)
4443adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → dom 𝑧𝐴)
4541, 44sstrd 3911 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎𝐴)
46 sseq1 3926 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝑑𝐴𝑎𝐴))
4746anbi2d 632 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑎 → ((𝜑𝑑𝐴) ↔ (𝜑𝑎𝐴)))
48 fveq2 6717 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝐻𝑑) = (𝐻𝑎))
49 fveq2 6717 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝑅1𝑑) = (𝑅1𝑎))
5048, 49weeq12d 40568 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑎 → ((𝐻𝑑) We (𝑅1𝑑) ↔ (𝐻𝑎) We (𝑅1𝑎)))
5147, 50imbi12d 348 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑎 → (((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ↔ ((𝜑𝑎𝐴) → (𝐻𝑎) We (𝑅1𝑎))))
5251rspcva 3535 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑐 ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))) → ((𝜑𝑎𝐴) → (𝐻𝑎) We (𝑅1𝑎)))
5352imp 410 . . . . . . . . . . . . . . . . 17 (((𝑎𝑐 ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))) ∧ (𝜑𝑎𝐴)) → (𝐻𝑎) We (𝑅1𝑎))
5435, 36, 38, 45, 53syl22anc 839 . . . . . . . . . . . . . . . 16 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝐻𝑎) We (𝑅1𝑎))
55 fveq1 6716 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐻𝑐) → (𝑧𝑎) = ((𝐻𝑐)‘𝑎))
5655ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) = ((𝐻𝑐)‘𝑎))
57 fvres 6736 . . . . . . . . . . . . . . . . . . 19 (𝑎𝑐 → ((𝐻𝑐)‘𝑎) = (𝐻𝑎))
5835, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ((𝐻𝑐)‘𝑎) = (𝐻𝑎))
5956, 58eqtrd 2777 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) = (𝐻𝑎))
60 weeq1 5539 . . . . . . . . . . . . . . . . 17 ((𝑧𝑎) = (𝐻𝑎) → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝐻𝑎) We (𝑅1𝑎)))
6159, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝐻𝑎) We (𝑅1𝑎)))
6254, 61mpbird 260 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) We (𝑅1𝑎))
6362ralrimiva 3105 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
6437, 2syl 17 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐴 ∈ On)
65 aomclem6.y . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
6637, 65syl 17 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
6716, 17, 18, 19, 20, 21, 33, 63, 64, 43, 66aomclem5 40586 . . . . . . . . . . . . 13 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐺 We (𝑅1‘dom 𝑧))
6832fveq2d 6721 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑅1‘dom 𝑧) = (𝑅1𝑐))
69 weeq2 5540 . . . . . . . . . . . . . 14 ((𝑅1‘dom 𝑧) = (𝑅1𝑐) → (𝐺 We (𝑅1‘dom 𝑧) ↔ 𝐺 We (𝑅1𝑐)))
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝐺 We (𝑅1‘dom 𝑧) ↔ 𝐺 We (𝑅1𝑐)))
7167, 70mpbid 235 . . . . . . . . . . . 12 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐺 We (𝑅1𝑐))
7271ex 416 . . . . . . . . . . 11 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)))
7372alrimiv 1935 . . . . . . . . . 10 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ∀𝑧(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)))
74 nfv 1922 . . . . . . . . . . 11 𝑑(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐))
75 nfv 1922 . . . . . . . . . . . 12 𝑧 𝑑 = (𝐻𝑐)
76 nfsbc1v 3714 . . . . . . . . . . . 12 𝑧[𝑑 / 𝑧]𝐺 We (𝑅1𝑐)
7775, 76nfim 1904 . . . . . . . . . . 11 𝑧(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
78 eqeq1 2741 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝑧 = (𝐻𝑐) ↔ 𝑑 = (𝐻𝑐)))
79 sbceq1a 3705 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝐺 We (𝑅1𝑐) ↔ [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
8078, 79imbi12d 348 . . . . . . . . . . 11 (𝑧 = 𝑑 → ((𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)) ↔ (𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐))))
8174, 77, 80cbvalv1 2341 . . . . . . . . . 10 (∀𝑧(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)) ↔ ∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
8273, 81sylib 221 . . . . . . . . 9 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
83 nfsbc1v 3714 . . . . . . . . . 10 𝑑[(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐)
84 fnfun 6479 . . . . . . . . . . . 12 (𝐻 Fn On → Fun 𝐻)
8527, 84ax-mp 5 . . . . . . . . . . 11 Fun 𝐻
86 vex 3412 . . . . . . . . . . 11 𝑐 ∈ V
87 resfunexg 7031 . . . . . . . . . . 11 ((Fun 𝐻𝑐 ∈ V) → (𝐻𝑐) ∈ V)
8885, 86, 87mp2an 692 . . . . . . . . . 10 (𝐻𝑐) ∈ V
89 sbceq1a 3705 . . . . . . . . . 10 (𝑑 = (𝐻𝑐) → ([𝑑 / 𝑧]𝐺 We (𝑅1𝑐) ↔ [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
9083, 88, 89ceqsal 3442 . . . . . . . . 9 (∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)) ↔ [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
9182, 90sylib 221 . . . . . . . 8 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
92 sbccow 3717 . . . . . . . 8 ([(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐) ↔ [(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐))
9391, 92sylib 221 . . . . . . 7 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → [(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐))
94 nfcsb1v 3836 . . . . . . . . . 10 𝑧(𝐻𝑐) / 𝑧𝐺
95 nfcv 2904 . . . . . . . . . 10 𝑧(𝑅1𝑐)
9694, 95nfwe 5527 . . . . . . . . 9 𝑧(𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)
97 csbeq1a 3825 . . . . . . . . . 10 (𝑧 = (𝐻𝑐) → 𝐺 = (𝐻𝑐) / 𝑧𝐺)
98 weeq1 5539 . . . . . . . . . 10 (𝐺 = (𝐻𝑐) / 𝑧𝐺 → (𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
9997, 98syl 17 . . . . . . . . 9 (𝑧 = (𝐻𝑐) → (𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
10096, 99sbciegf 3733 . . . . . . . 8 ((𝐻𝑐) ∈ V → ([(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
10188, 100ax-mp 5 . . . . . . 7 ([(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐))
10293, 101sylib 221 . . . . . 6 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐))
103 recsval 8140 . . . . . . . . 9 (𝑐 ∈ On → (recs((𝑧 ∈ V ↦ 𝐺))‘𝑐) = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐)))
10426fveq1i 6718 . . . . . . . . 9 (𝐻𝑐) = (recs((𝑧 ∈ V ↦ 𝐺))‘𝑐)
105 fvex 6730 . . . . . . . . . . . . . . 15 (𝑅1‘dom 𝑧) ∈ V
106105, 105xpex 7538 . . . . . . . . . . . . . 14 ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)) ∈ V
107106inex2 5211 . . . . . . . . . . . . 13 (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) ∈ V
10821, 107eqeltri 2834 . . . . . . . . . . . 12 𝐺 ∈ V
109108csbex 5204 . . . . . . . . . . 11 (𝐻𝑐) / 𝑧𝐺 ∈ V
110 eqid 2737 . . . . . . . . . . . 12 (𝑧 ∈ V ↦ 𝐺) = (𝑧 ∈ V ↦ 𝐺)
111110fvmpts 6821 . . . . . . . . . . 11 (((𝐻𝑐) ∈ V ∧ (𝐻𝑐) / 𝑧𝐺 ∈ V) → ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = (𝐻𝑐) / 𝑧𝐺)
11288, 109, 111mp2an 692 . . . . . . . . . 10 ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = (𝐻𝑐) / 𝑧𝐺
11326reseq1i 5847 . . . . . . . . . . 11 (𝐻𝑐) = (recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐)
114113fveq2i 6720 . . . . . . . . . 10 ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐))
115112, 114eqtr3i 2767 . . . . . . . . 9 (𝐻𝑐) / 𝑧𝐺 = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐))
116103, 104, 1153eqtr4g 2803 . . . . . . . 8 (𝑐 ∈ On → (𝐻𝑐) = (𝐻𝑐) / 𝑧𝐺)
117 weeq1 5539 . . . . . . . 8 ((𝐻𝑐) = (𝐻𝑐) / 𝑧𝐺 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
118116, 117syl 17 . . . . . . 7 (𝑐 ∈ On → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
1191183ad2ant1 1135 . . . . . 6 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
120102, 119mpbird 260 . . . . 5 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝐻𝑐) We (𝑅1𝑐))
1211203exp 1121 . . . 4 (𝑐 ∈ On → (∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) → ((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐))))
1229, 15, 121tfis3 7636 . . 3 (𝐴 ∈ On → ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴)))
1233, 122mpcom 38 . 2 ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴))
1241, 123mpan2 691 1 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089  wal 1541   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  Vcvv 3408  [wsbc 3694  csb 3811  cdif 3863  cin 3865  wss 3866  c0 4237  ifcif 4439  𝒫 cpw 4513  {csn 4541   cuni 4819   cint 4859   class class class wbr 5053  {copab 5115  cmpt 5135   E cep 5459   We wwe 5508   × cxp 5549  ccnv 5550  dom cdm 5551  ran crn 5552  cres 5553  cima 5554  Oncon0 6213  suc csuc 6215  Fun wfun 6374   Fn wfn 6375  cfv 6380  recscrecs 8107  Fincfn 8626  supcsup 9056  𝑅1cr1 9378  rankcrnk 9379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-map 8510  df-en 8627  df-fin 8630  df-sup 9058  df-r1 9380  df-rank 9381
This theorem is referenced by:  aomclem7  40588
  Copyright terms: Public domain W3C validator