Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem6 Structured version   Visualization version   GIF version

Theorem aomclem6 43035
Description: Lemma for dfac11 43038. Transfinite induction, close over 𝑧. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem6.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem6.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem6.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem6.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem6.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem6.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem6.h 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
aomclem6.a (𝜑𝐴 ∈ On)
aomclem6.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem6 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑,𝑧   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑   𝐴,𝑎,𝑏,𝑐,𝑑,𝑧   𝐻,𝑎,𝑏,𝑐,𝑑,𝑧   𝐺,𝑑
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐)   𝐻(𝑦)

Proof of Theorem aomclem6
StepHypRef Expression
1 ssid 3960 . 2 𝐴𝐴
2 aomclem6.a . . . 4 (𝜑𝐴 ∈ On)
32adantr 480 . . 3 ((𝜑𝐴𝐴) → 𝐴 ∈ On)
4 sseq1 3963 . . . . . 6 (𝑐 = 𝑑 → (𝑐𝐴𝑑𝐴))
54anbi2d 630 . . . . 5 (𝑐 = 𝑑 → ((𝜑𝑐𝐴) ↔ (𝜑𝑑𝐴)))
6 fveq2 6826 . . . . . 6 (𝑐 = 𝑑 → (𝐻𝑐) = (𝐻𝑑))
7 fveq2 6826 . . . . . 6 (𝑐 = 𝑑 → (𝑅1𝑐) = (𝑅1𝑑))
86, 7weeq12d 5612 . . . . 5 (𝑐 = 𝑑 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑑) We (𝑅1𝑑)))
95, 8imbi12d 344 . . . 4 (𝑐 = 𝑑 → (((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐)) ↔ ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))))
10 sseq1 3963 . . . . . 6 (𝑐 = 𝐴 → (𝑐𝐴𝐴𝐴))
1110anbi2d 630 . . . . 5 (𝑐 = 𝐴 → ((𝜑𝑐𝐴) ↔ (𝜑𝐴𝐴)))
12 fveq2 6826 . . . . . 6 (𝑐 = 𝐴 → (𝐻𝑐) = (𝐻𝐴))
13 fveq2 6826 . . . . . 6 (𝑐 = 𝐴 → (𝑅1𝑐) = (𝑅1𝐴))
1412, 13weeq12d 5612 . . . . 5 (𝑐 = 𝐴 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝐴) We (𝑅1𝐴)))
1511, 14imbi12d 344 . . . 4 (𝑐 = 𝐴 → (((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐)) ↔ ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴))))
16 aomclem6.b . . . . . . . . . . . . . 14 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
17 aomclem6.c . . . . . . . . . . . . . 14 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
18 aomclem6.d . . . . . . . . . . . . . 14 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
19 aomclem6.e . . . . . . . . . . . . . 14 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
20 aomclem6.f . . . . . . . . . . . . . 14 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
21 aomclem6.g . . . . . . . . . . . . . 14 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
22 dmeq 5850 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐻𝑐) → dom 𝑧 = dom (𝐻𝑐))
2322adantl 481 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 = dom (𝐻𝑐))
24 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝑐 ∈ On)
25 onss 7725 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ On → 𝑐 ⊆ On)
26 aomclem6.h . . . . . . . . . . . . . . . . . . 19 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
2726tfr1 8326 . . . . . . . . . . . . . . . . . 18 𝐻 Fn On
28 fnssres 6609 . . . . . . . . . . . . . . . . . 18 ((𝐻 Fn On ∧ 𝑐 ⊆ On) → (𝐻𝑐) Fn 𝑐)
2927, 28mpan 690 . . . . . . . . . . . . . . . . 17 (𝑐 ⊆ On → (𝐻𝑐) Fn 𝑐)
30 fndm 6589 . . . . . . . . . . . . . . . . 17 ((𝐻𝑐) Fn 𝑐 → dom (𝐻𝑐) = 𝑐)
3124, 25, 29, 304syl 19 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom (𝐻𝑐) = 𝑐)
3223, 31eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 = 𝑐)
3332, 24eqeltrd 2828 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 ∈ On)
3432eleq2d 2814 . . . . . . . . . . . . . . . . . 18 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑎 ∈ dom 𝑧𝑎𝑐))
3534biimpa 476 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎𝑐)
36 simpll2 1214 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)))
37 simpl3l 1229 . . . . . . . . . . . . . . . . . 18 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝜑)
3837adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝜑)
39 onelss 6353 . . . . . . . . . . . . . . . . . . . 20 (dom 𝑧 ∈ On → (𝑎 ∈ dom 𝑧𝑎 ⊆ dom 𝑧))
4033, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑎 ∈ dom 𝑧𝑎 ⊆ dom 𝑧))
4140imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎 ⊆ dom 𝑧)
42 simpl3r 1230 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝑐𝐴)
4332, 42eqsstrd 3972 . . . . . . . . . . . . . . . . . . 19 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧𝐴)
4443adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → dom 𝑧𝐴)
4541, 44sstrd 3948 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎𝐴)
46 sseq1 3963 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝑑𝐴𝑎𝐴))
4746anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑎 → ((𝜑𝑑𝐴) ↔ (𝜑𝑎𝐴)))
48 fveq2 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝐻𝑑) = (𝐻𝑎))
49 fveq2 6826 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝑅1𝑑) = (𝑅1𝑎))
5048, 49weeq12d 5612 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑎 → ((𝐻𝑑) We (𝑅1𝑑) ↔ (𝐻𝑎) We (𝑅1𝑎)))
5147, 50imbi12d 344 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑎 → (((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ↔ ((𝜑𝑎𝐴) → (𝐻𝑎) We (𝑅1𝑎))))
5251rspcva 3577 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑐 ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))) → ((𝜑𝑎𝐴) → (𝐻𝑎) We (𝑅1𝑎)))
5352imp 406 . . . . . . . . . . . . . . . . 17 (((𝑎𝑐 ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))) ∧ (𝜑𝑎𝐴)) → (𝐻𝑎) We (𝑅1𝑎))
5435, 36, 38, 45, 53syl22anc 838 . . . . . . . . . . . . . . . 16 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝐻𝑎) We (𝑅1𝑎))
55 fveq1 6825 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐻𝑐) → (𝑧𝑎) = ((𝐻𝑐)‘𝑎))
5655ad2antlr 727 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) = ((𝐻𝑐)‘𝑎))
57 fvres 6845 . . . . . . . . . . . . . . . . . . 19 (𝑎𝑐 → ((𝐻𝑐)‘𝑎) = (𝐻𝑎))
5835, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ((𝐻𝑐)‘𝑎) = (𝐻𝑎))
5956, 58eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) = (𝐻𝑎))
60 weeq1 5610 . . . . . . . . . . . . . . . . 17 ((𝑧𝑎) = (𝐻𝑎) → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝐻𝑎) We (𝑅1𝑎)))
6159, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝐻𝑎) We (𝑅1𝑎)))
6254, 61mpbird 257 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) We (𝑅1𝑎))
6362ralrimiva 3121 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
6437, 2syl 17 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐴 ∈ On)
65 aomclem6.y . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
6637, 65syl 17 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
6716, 17, 18, 19, 20, 21, 33, 63, 64, 43, 66aomclem5 43034 . . . . . . . . . . . . 13 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐺 We (𝑅1‘dom 𝑧))
6832fveq2d 6830 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑅1‘dom 𝑧) = (𝑅1𝑐))
69 weeq2 5611 . . . . . . . . . . . . . 14 ((𝑅1‘dom 𝑧) = (𝑅1𝑐) → (𝐺 We (𝑅1‘dom 𝑧) ↔ 𝐺 We (𝑅1𝑐)))
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝐺 We (𝑅1‘dom 𝑧) ↔ 𝐺 We (𝑅1𝑐)))
7167, 70mpbid 232 . . . . . . . . . . . 12 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐺 We (𝑅1𝑐))
7271ex 412 . . . . . . . . . . 11 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)))
7372alrimiv 1927 . . . . . . . . . 10 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ∀𝑧(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)))
74 nfv 1914 . . . . . . . . . . 11 𝑑(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐))
75 nfv 1914 . . . . . . . . . . . 12 𝑧 𝑑 = (𝐻𝑐)
76 nfsbc1v 3764 . . . . . . . . . . . 12 𝑧[𝑑 / 𝑧]𝐺 We (𝑅1𝑐)
7775, 76nfim 1896 . . . . . . . . . . 11 𝑧(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
78 eqeq1 2733 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝑧 = (𝐻𝑐) ↔ 𝑑 = (𝐻𝑐)))
79 sbceq1a 3755 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝐺 We (𝑅1𝑐) ↔ [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
8078, 79imbi12d 344 . . . . . . . . . . 11 (𝑧 = 𝑑 → ((𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)) ↔ (𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐))))
8174, 77, 80cbvalv1 2339 . . . . . . . . . 10 (∀𝑧(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)) ↔ ∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
8273, 81sylib 218 . . . . . . . . 9 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
83 nfsbc1v 3764 . . . . . . . . . 10 𝑑[(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐)
84 fnfun 6586 . . . . . . . . . . . 12 (𝐻 Fn On → Fun 𝐻)
8527, 84ax-mp 5 . . . . . . . . . . 11 Fun 𝐻
86 vex 3442 . . . . . . . . . . 11 𝑐 ∈ V
87 resfunexg 7155 . . . . . . . . . . 11 ((Fun 𝐻𝑐 ∈ V) → (𝐻𝑐) ∈ V)
8885, 86, 87mp2an 692 . . . . . . . . . 10 (𝐻𝑐) ∈ V
89 sbceq1a 3755 . . . . . . . . . 10 (𝑑 = (𝐻𝑐) → ([𝑑 / 𝑧]𝐺 We (𝑅1𝑐) ↔ [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
9083, 88, 89ceqsal 3476 . . . . . . . . 9 (∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)) ↔ [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
9182, 90sylib 218 . . . . . . . 8 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
92 sbccow 3767 . . . . . . . 8 ([(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐) ↔ [(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐))
9391, 92sylib 218 . . . . . . 7 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → [(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐))
94 nfcsb1v 3877 . . . . . . . . . 10 𝑧(𝐻𝑐) / 𝑧𝐺
95 nfcv 2891 . . . . . . . . . 10 𝑧(𝑅1𝑐)
9694, 95nfwe 5598 . . . . . . . . 9 𝑧(𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)
97 csbeq1a 3867 . . . . . . . . . 10 (𝑧 = (𝐻𝑐) → 𝐺 = (𝐻𝑐) / 𝑧𝐺)
98 weeq1 5610 . . . . . . . . . 10 (𝐺 = (𝐻𝑐) / 𝑧𝐺 → (𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
9997, 98syl 17 . . . . . . . . 9 (𝑧 = (𝐻𝑐) → (𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
10096, 99sbciegf 3783 . . . . . . . 8 ((𝐻𝑐) ∈ V → ([(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
10188, 100ax-mp 5 . . . . . . 7 ([(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐))
10293, 101sylib 218 . . . . . 6 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐))
103 recsval 8333 . . . . . . . . 9 (𝑐 ∈ On → (recs((𝑧 ∈ V ↦ 𝐺))‘𝑐) = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐)))
10426fveq1i 6827 . . . . . . . . 9 (𝐻𝑐) = (recs((𝑧 ∈ V ↦ 𝐺))‘𝑐)
105 fvex 6839 . . . . . . . . . . . . . . 15 (𝑅1‘dom 𝑧) ∈ V
106105, 105xpex 7693 . . . . . . . . . . . . . 14 ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)) ∈ V
107106inex2 5260 . . . . . . . . . . . . 13 (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) ∈ V
10821, 107eqeltri 2824 . . . . . . . . . . . 12 𝐺 ∈ V
109108csbex 5253 . . . . . . . . . . 11 (𝐻𝑐) / 𝑧𝐺 ∈ V
110 eqid 2729 . . . . . . . . . . . 12 (𝑧 ∈ V ↦ 𝐺) = (𝑧 ∈ V ↦ 𝐺)
111110fvmpts 6937 . . . . . . . . . . 11 (((𝐻𝑐) ∈ V ∧ (𝐻𝑐) / 𝑧𝐺 ∈ V) → ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = (𝐻𝑐) / 𝑧𝐺)
11288, 109, 111mp2an 692 . . . . . . . . . 10 ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = (𝐻𝑐) / 𝑧𝐺
11326reseq1i 5930 . . . . . . . . . . 11 (𝐻𝑐) = (recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐)
114113fveq2i 6829 . . . . . . . . . 10 ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐))
115112, 114eqtr3i 2754 . . . . . . . . 9 (𝐻𝑐) / 𝑧𝐺 = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐))
116103, 104, 1153eqtr4g 2789 . . . . . . . 8 (𝑐 ∈ On → (𝐻𝑐) = (𝐻𝑐) / 𝑧𝐺)
117 weeq1 5610 . . . . . . . 8 ((𝐻𝑐) = (𝐻𝑐) / 𝑧𝐺 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
118116, 117syl 17 . . . . . . 7 (𝑐 ∈ On → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
1191183ad2ant1 1133 . . . . . 6 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
120102, 119mpbird 257 . . . . 5 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝐻𝑐) We (𝑅1𝑐))
1211203exp 1119 . . . 4 (𝑐 ∈ On → (∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) → ((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐))))
1229, 15, 121tfis3 7798 . . 3 (𝐴 ∈ On → ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴)))
1233, 122mpcom 38 . 2 ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴))
1241, 123mpan2 691 1 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  [wsbc 3744  csb 3853  cdif 3902  cin 3904  wss 3905  c0 4286  ifcif 4478  𝒫 cpw 4553  {csn 4579   cuni 4861   cint 4899   class class class wbr 5095  {copab 5157  cmpt 5176   E cep 5522   We wwe 5575   × cxp 5621  ccnv 5622  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  Oncon0 6311  suc csuc 6313  Fun wfun 6480   Fn wfn 6481  cfv 6486  recscrecs 8300  Fincfn 8879  supcsup 9349  𝑅1cr1 9677  rankcrnk 9678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-map 8762  df-en 8880  df-fin 8883  df-sup 9351  df-r1 9679  df-rank 9680
This theorem is referenced by:  aomclem7  43036
  Copyright terms: Public domain W3C validator