Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aomclem6 Structured version   Visualization version   GIF version

Theorem aomclem6 39165
Description: Lemma for dfac11 39168. Transfinite induction, close over 𝑧. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
aomclem6.b 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
aomclem6.c 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
aomclem6.d 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
aomclem6.e 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
aomclem6.f 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
aomclem6.g 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
aomclem6.h 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
aomclem6.a (𝜑𝐴 ∈ On)
aomclem6.y (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
Assertion
Ref Expression
aomclem6 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
Distinct variable groups:   𝑦,𝑧,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑,𝑧   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑   𝐴,𝑎,𝑏,𝑐,𝑑,𝑧   𝐻,𝑎,𝑏,𝑐,𝑑,𝑧   𝐺,𝑑
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑦,𝑧)   𝐷(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐹(𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝐺(𝑦,𝑧,𝑎,𝑏,𝑐)   𝐻(𝑦)

Proof of Theorem aomclem6
StepHypRef Expression
1 ssid 3916 . 2 𝐴𝐴
2 aomclem6.a . . . 4 (𝜑𝐴 ∈ On)
32adantr 481 . . 3 ((𝜑𝐴𝐴) → 𝐴 ∈ On)
4 sseq1 3919 . . . . . 6 (𝑐 = 𝑑 → (𝑐𝐴𝑑𝐴))
54anbi2d 628 . . . . 5 (𝑐 = 𝑑 → ((𝜑𝑐𝐴) ↔ (𝜑𝑑𝐴)))
6 fveq2 6545 . . . . . 6 (𝑐 = 𝑑 → (𝐻𝑐) = (𝐻𝑑))
7 fveq2 6545 . . . . . 6 (𝑐 = 𝑑 → (𝑅1𝑐) = (𝑅1𝑑))
86, 7weeq12d 39146 . . . . 5 (𝑐 = 𝑑 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑑) We (𝑅1𝑑)))
95, 8imbi12d 346 . . . 4 (𝑐 = 𝑑 → (((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐)) ↔ ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))))
10 sseq1 3919 . . . . . 6 (𝑐 = 𝐴 → (𝑐𝐴𝐴𝐴))
1110anbi2d 628 . . . . 5 (𝑐 = 𝐴 → ((𝜑𝑐𝐴) ↔ (𝜑𝐴𝐴)))
12 fveq2 6545 . . . . . 6 (𝑐 = 𝐴 → (𝐻𝑐) = (𝐻𝐴))
13 fveq2 6545 . . . . . 6 (𝑐 = 𝐴 → (𝑅1𝑐) = (𝑅1𝐴))
1412, 13weeq12d 39146 . . . . 5 (𝑐 = 𝐴 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝐴) We (𝑅1𝐴)))
1511, 14imbi12d 346 . . . 4 (𝑐 = 𝐴 → (((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐)) ↔ ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴))))
16 aomclem6.b . . . . . . . . . . . . . 14 𝐵 = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐 ∈ (𝑅1 dom 𝑧)((𝑐𝑏 ∧ ¬ 𝑐𝑎) ∧ ∀𝑑 ∈ (𝑅1 dom 𝑧)(𝑑(𝑧 dom 𝑧)𝑐 → (𝑑𝑎𝑑𝑏)))}
17 aomclem6.c . . . . . . . . . . . . . 14 𝐶 = (𝑎 ∈ V ↦ sup((𝑦𝑎), (𝑅1‘dom 𝑧), 𝐵))
18 aomclem6.d . . . . . . . . . . . . . 14 𝐷 = recs((𝑎 ∈ V ↦ (𝐶‘((𝑅1‘dom 𝑧) ∖ ran 𝑎))))
19 aomclem6.e . . . . . . . . . . . . . 14 𝐸 = {⟨𝑎, 𝑏⟩ ∣ (𝐷 “ {𝑎}) ∈ (𝐷 “ {𝑏})}
20 aomclem6.f . . . . . . . . . . . . . 14 𝐹 = {⟨𝑎, 𝑏⟩ ∣ ((rank‘𝑎) E (rank‘𝑏) ∨ ((rank‘𝑎) = (rank‘𝑏) ∧ 𝑎(𝑧‘suc (rank‘𝑎))𝑏))}
21 aomclem6.g . . . . . . . . . . . . . 14 𝐺 = (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)))
22 dmeq 5665 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝐻𝑐) → dom 𝑧 = dom (𝐻𝑐))
2322adantl 482 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 = dom (𝐻𝑐))
24 simpl1 1184 . . . . . . . . . . . . . . . . 17 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝑐 ∈ On)
25 onss 7368 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ On → 𝑐 ⊆ On)
26 aomclem6.h . . . . . . . . . . . . . . . . . . 19 𝐻 = recs((𝑧 ∈ V ↦ 𝐺))
2726tfr1 7892 . . . . . . . . . . . . . . . . . 18 𝐻 Fn On
28 fnssres 6347 . . . . . . . . . . . . . . . . . 18 ((𝐻 Fn On ∧ 𝑐 ⊆ On) → (𝐻𝑐) Fn 𝑐)
2927, 28mpan 686 . . . . . . . . . . . . . . . . 17 (𝑐 ⊆ On → (𝐻𝑐) Fn 𝑐)
30 fndm 6332 . . . . . . . . . . . . . . . . 17 ((𝐻𝑐) Fn 𝑐 → dom (𝐻𝑐) = 𝑐)
3124, 25, 29, 304syl 19 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom (𝐻𝑐) = 𝑐)
3223, 31eqtrd 2833 . . . . . . . . . . . . . . 15 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 = 𝑐)
3332, 24eqeltrd 2885 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧 ∈ On)
3432eleq2d 2870 . . . . . . . . . . . . . . . . . 18 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑎 ∈ dom 𝑧𝑎𝑐))
3534biimpa 477 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎𝑐)
36 simpll2 1206 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)))
37 simpl3l 1221 . . . . . . . . . . . . . . . . . 18 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝜑)
3837adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝜑)
39 onelss 6115 . . . . . . . . . . . . . . . . . . . 20 (dom 𝑧 ∈ On → (𝑎 ∈ dom 𝑧𝑎 ⊆ dom 𝑧))
4033, 39syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑎 ∈ dom 𝑧𝑎 ⊆ dom 𝑧))
4140imp 407 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎 ⊆ dom 𝑧)
42 simpl3r 1222 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝑐𝐴)
4332, 42eqsstrd 3932 . . . . . . . . . . . . . . . . . . 19 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → dom 𝑧𝐴)
4443adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → dom 𝑧𝐴)
4541, 44sstrd 3905 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → 𝑎𝐴)
46 sseq1 3919 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝑑𝐴𝑎𝐴))
4746anbi2d 628 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑎 → ((𝜑𝑑𝐴) ↔ (𝜑𝑎𝐴)))
48 fveq2 6545 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝐻𝑑) = (𝐻𝑎))
49 fveq2 6545 . . . . . . . . . . . . . . . . . . . . 21 (𝑑 = 𝑎 → (𝑅1𝑑) = (𝑅1𝑎))
5048, 49weeq12d 39146 . . . . . . . . . . . . . . . . . . . 20 (𝑑 = 𝑎 → ((𝐻𝑑) We (𝑅1𝑑) ↔ (𝐻𝑎) We (𝑅1𝑎)))
5147, 50imbi12d 346 . . . . . . . . . . . . . . . . . . 19 (𝑑 = 𝑎 → (((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ↔ ((𝜑𝑎𝐴) → (𝐻𝑎) We (𝑅1𝑎))))
5251rspcva 3559 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑐 ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))) → ((𝜑𝑎𝐴) → (𝐻𝑎) We (𝑅1𝑎)))
5352imp 407 . . . . . . . . . . . . . . . . 17 (((𝑎𝑐 ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑))) ∧ (𝜑𝑎𝐴)) → (𝐻𝑎) We (𝑅1𝑎))
5435, 36, 38, 45, 53syl22anc 835 . . . . . . . . . . . . . . . 16 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝐻𝑎) We (𝑅1𝑎))
55 fveq1 6544 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐻𝑐) → (𝑧𝑎) = ((𝐻𝑐)‘𝑎))
5655ad2antlr 723 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) = ((𝐻𝑐)‘𝑎))
57 fvres 6564 . . . . . . . . . . . . . . . . . . 19 (𝑎𝑐 → ((𝐻𝑐)‘𝑎) = (𝐻𝑎))
5835, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ((𝐻𝑐)‘𝑎) = (𝐻𝑎))
5956, 58eqtrd 2833 . . . . . . . . . . . . . . . . 17 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) = (𝐻𝑎))
60 weeq1 5438 . . . . . . . . . . . . . . . . 17 ((𝑧𝑎) = (𝐻𝑎) → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝐻𝑎) We (𝑅1𝑎)))
6159, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → ((𝑧𝑎) We (𝑅1𝑎) ↔ (𝐻𝑎) We (𝑅1𝑎)))
6254, 61mpbird 258 . . . . . . . . . . . . . . 15 ((((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) ∧ 𝑎 ∈ dom 𝑧) → (𝑧𝑎) We (𝑅1𝑎))
6362ralrimiva 3151 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → ∀𝑎 ∈ dom 𝑧(𝑧𝑎) We (𝑅1𝑎))
6437, 2syl 17 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐴 ∈ On)
65 aomclem6.y . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
6637, 65syl 17 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → ∀𝑎 ∈ 𝒫 (𝑅1𝐴)(𝑎 ≠ ∅ → (𝑦𝑎) ∈ ((𝒫 𝑎 ∩ Fin) ∖ {∅})))
6716, 17, 18, 19, 20, 21, 33, 63, 64, 43, 66aomclem5 39164 . . . . . . . . . . . . 13 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐺 We (𝑅1‘dom 𝑧))
6832fveq2d 6549 . . . . . . . . . . . . . 14 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝑅1‘dom 𝑧) = (𝑅1𝑐))
69 weeq2 5439 . . . . . . . . . . . . . 14 ((𝑅1‘dom 𝑧) = (𝑅1𝑐) → (𝐺 We (𝑅1‘dom 𝑧) ↔ 𝐺 We (𝑅1𝑐)))
7068, 69syl 17 . . . . . . . . . . . . 13 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → (𝐺 We (𝑅1‘dom 𝑧) ↔ 𝐺 We (𝑅1𝑐)))
7167, 70mpbid 233 . . . . . . . . . . . 12 (((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) ∧ 𝑧 = (𝐻𝑐)) → 𝐺 We (𝑅1𝑐))
7271ex 413 . . . . . . . . . . 11 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)))
7372alrimiv 1909 . . . . . . . . . 10 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ∀𝑧(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)))
74 nfv 1896 . . . . . . . . . . 11 𝑑(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐))
75 nfv 1896 . . . . . . . . . . . 12 𝑧 𝑑 = (𝐻𝑐)
76 nfsbc1v 3731 . . . . . . . . . . . 12 𝑧[𝑑 / 𝑧]𝐺 We (𝑅1𝑐)
7775, 76nfim 1882 . . . . . . . . . . 11 𝑧(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
78 eqeq1 2801 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝑧 = (𝐻𝑐) ↔ 𝑑 = (𝐻𝑐)))
79 sbceq1a 3722 . . . . . . . . . . . 12 (𝑧 = 𝑑 → (𝐺 We (𝑅1𝑐) ↔ [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
8078, 79imbi12d 346 . . . . . . . . . . 11 (𝑧 = 𝑑 → ((𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)) ↔ (𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐))))
8174, 77, 80cbvalv1 2322 . . . . . . . . . 10 (∀𝑧(𝑧 = (𝐻𝑐) → 𝐺 We (𝑅1𝑐)) ↔ ∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
8273, 81sylib 219 . . . . . . . . 9 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
83 nfsbc1v 3731 . . . . . . . . . 10 𝑑[(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐)
84 fnfun 6330 . . . . . . . . . . . 12 (𝐻 Fn On → Fun 𝐻)
8527, 84ax-mp 5 . . . . . . . . . . 11 Fun 𝐻
86 vex 3443 . . . . . . . . . . 11 𝑐 ∈ V
87 resfunexg 6851 . . . . . . . . . . 11 ((Fun 𝐻𝑐 ∈ V) → (𝐻𝑐) ∈ V)
8885, 86, 87mp2an 688 . . . . . . . . . 10 (𝐻𝑐) ∈ V
89 sbceq1a 3722 . . . . . . . . . 10 (𝑑 = (𝐻𝑐) → ([𝑑 / 𝑧]𝐺 We (𝑅1𝑐) ↔ [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐)))
9083, 88, 89ceqsal 3477 . . . . . . . . 9 (∀𝑑(𝑑 = (𝐻𝑐) → [𝑑 / 𝑧]𝐺 We (𝑅1𝑐)) ↔ [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
9182, 90sylib 219 . . . . . . . 8 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → [(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐))
92 sbcco 3734 . . . . . . . 8 ([(𝐻𝑐) / 𝑑][𝑑 / 𝑧]𝐺 We (𝑅1𝑐) ↔ [(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐))
9391, 92sylib 219 . . . . . . 7 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → [(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐))
94 nfcsb1v 3839 . . . . . . . . . 10 𝑧(𝐻𝑐) / 𝑧𝐺
95 nfcv 2951 . . . . . . . . . 10 𝑧(𝑅1𝑐)
9694, 95nfwe 5426 . . . . . . . . 9 𝑧(𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)
97 csbeq1a 3830 . . . . . . . . . 10 (𝑧 = (𝐻𝑐) → 𝐺 = (𝐻𝑐) / 𝑧𝐺)
98 weeq1 5438 . . . . . . . . . 10 (𝐺 = (𝐻𝑐) / 𝑧𝐺 → (𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
9997, 98syl 17 . . . . . . . . 9 (𝑧 = (𝐻𝑐) → (𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
10096, 99sbciegf 3743 . . . . . . . 8 ((𝐻𝑐) ∈ V → ([(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
10188, 100ax-mp 5 . . . . . . 7 ([(𝐻𝑐) / 𝑧]𝐺 We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐))
10293, 101sylib 219 . . . . . 6 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐))
103 recsval 7899 . . . . . . . . 9 (𝑐 ∈ On → (recs((𝑧 ∈ V ↦ 𝐺))‘𝑐) = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐)))
10426fveq1i 6546 . . . . . . . . 9 (𝐻𝑐) = (recs((𝑧 ∈ V ↦ 𝐺))‘𝑐)
105 fvex 6558 . . . . . . . . . . . . . . 15 (𝑅1‘dom 𝑧) ∈ V
106105, 105xpex 7340 . . . . . . . . . . . . . 14 ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧)) ∈ V
107106inex2 5120 . . . . . . . . . . . . 13 (if(dom 𝑧 = dom 𝑧, 𝐹, 𝐸) ∩ ((𝑅1‘dom 𝑧) × (𝑅1‘dom 𝑧))) ∈ V
10821, 107eqeltri 2881 . . . . . . . . . . . 12 𝐺 ∈ V
109108csbex 5113 . . . . . . . . . . 11 (𝐻𝑐) / 𝑧𝐺 ∈ V
110 eqid 2797 . . . . . . . . . . . 12 (𝑧 ∈ V ↦ 𝐺) = (𝑧 ∈ V ↦ 𝐺)
111110fvmpts 6645 . . . . . . . . . . 11 (((𝐻𝑐) ∈ V ∧ (𝐻𝑐) / 𝑧𝐺 ∈ V) → ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = (𝐻𝑐) / 𝑧𝐺)
11288, 109, 111mp2an 688 . . . . . . . . . 10 ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = (𝐻𝑐) / 𝑧𝐺
11326reseq1i 5737 . . . . . . . . . . 11 (𝐻𝑐) = (recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐)
114113fveq2i 6548 . . . . . . . . . 10 ((𝑧 ∈ V ↦ 𝐺)‘(𝐻𝑐)) = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐))
115112, 114eqtr3i 2823 . . . . . . . . 9 (𝐻𝑐) / 𝑧𝐺 = ((𝑧 ∈ V ↦ 𝐺)‘(recs((𝑧 ∈ V ↦ 𝐺)) ↾ 𝑐))
116103, 104, 1153eqtr4g 2858 . . . . . . . 8 (𝑐 ∈ On → (𝐻𝑐) = (𝐻𝑐) / 𝑧𝐺)
117 weeq1 5438 . . . . . . . 8 ((𝐻𝑐) = (𝐻𝑐) / 𝑧𝐺 → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
118116, 117syl 17 . . . . . . 7 (𝑐 ∈ On → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
1191183ad2ant1 1126 . . . . . 6 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → ((𝐻𝑐) We (𝑅1𝑐) ↔ (𝐻𝑐) / 𝑧𝐺 We (𝑅1𝑐)))
120102, 119mpbird 258 . . . . 5 ((𝑐 ∈ On ∧ ∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) ∧ (𝜑𝑐𝐴)) → (𝐻𝑐) We (𝑅1𝑐))
1211203exp 1112 . . . 4 (𝑐 ∈ On → (∀𝑑𝑐 ((𝜑𝑑𝐴) → (𝐻𝑑) We (𝑅1𝑑)) → ((𝜑𝑐𝐴) → (𝐻𝑐) We (𝑅1𝑐))))
1229, 15, 121tfis3 7435 . . 3 (𝐴 ∈ On → ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴)))
1233, 122mpcom 38 . 2 ((𝜑𝐴𝐴) → (𝐻𝐴) We (𝑅1𝐴))
1241, 123mpan2 687 1 (𝜑 → (𝐻𝐴) We (𝑅1𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080  wal 1523   = wceq 1525  wcel 2083  wne 2986  wral 3107  wrex 3108  Vcvv 3440  [wsbc 3711  csb 3817  cdif 3862  cin 3864  wss 3865  c0 4217  ifcif 4387  𝒫 cpw 4459  {csn 4478   cuni 4751   cint 4788   class class class wbr 4968  {copab 5030  cmpt 5047   E cep 5359   We wwe 5408   × cxp 5448  ccnv 5449  dom cdm 5450  ran crn 5451  cres 5452  cima 5453  Oncon0 6073  suc csuc 6075  Fun wfun 6226   Fn wfn 6227  cfv 6232  recscrecs 7866  Fincfn 8364  supcsup 8757  𝑅1cr1 9044  rankcrnk 9045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-2o 7961  df-er 8146  df-map 8265  df-en 8365  df-fin 8368  df-sup 8759  df-r1 9046  df-rank 9047
This theorem is referenced by:  aomclem7  39166
  Copyright terms: Public domain W3C validator