| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvexd | Structured version Visualization version GIF version | ||
| Description: The value of a class exists (as consequent of anything). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fvexd | ⊢ (𝜑 → (𝐹‘𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6919 | . 2 ⊢ (𝐹‘𝐴) ∈ V | |
| 2 | 1 | a1i 11 | 1 ⊢ (𝜑 → (𝐹‘𝐴) ∈ V) |
| Copyright terms: Public domain | W3C validator |