![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcnv4mpt | Structured version Visualization version GIF version |
Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
Ref | Expression |
---|---|
funcnvmpt.0 | ⊢ Ⅎ𝑥𝜑 |
funcnvmpt.1 | ⊢ Ⅎ𝑥𝐴 |
funcnvmpt.2 | ⊢ Ⅎ𝑥𝐹 |
funcnvmpt.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
funcnvmpt.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
funcnv4mpt | ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ ⦋𝑖 / 𝑥⦌𝐵 ≠ ⦋𝑗 / 𝑥⦌𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1910 | . 2 ⊢ Ⅎ𝑖𝜑 | |
2 | nfcv 2898 | . 2 ⊢ Ⅎ𝑖𝐴 | |
3 | nfcv 2898 | . 2 ⊢ Ⅎ𝑖𝐹 | |
4 | funcnvmpt.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | funcnvmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
6 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑖𝐵 | |
7 | nfcsb1v 3914 | . . . 4 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 | |
8 | csbeq1a 3903 | . . . 4 ⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) | |
9 | 5, 2, 6, 7, 8 | cbvmptf 5251 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑥⦌𝐵) |
10 | 4, 9 | eqtri 2755 | . 2 ⊢ 𝐹 = (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑥⦌𝐵) |
11 | funcnvmpt.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
12 | 11 | sbimi 2070 | . . 3 ⊢ ([𝑖 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) → [𝑖 / 𝑥]𝐵 ∈ 𝑉) |
13 | funcnvmpt.0 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
14 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑥𝑖 | |
15 | 14, 5 | nfel 2912 | . . . . 5 ⊢ Ⅎ𝑥 𝑖 ∈ 𝐴 |
16 | 13, 15 | nfan 1895 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑖 ∈ 𝐴) |
17 | eleq1w 2811 | . . . . 5 ⊢ (𝑥 = 𝑖 → (𝑥 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) | |
18 | 17 | anbi2d 628 | . . . 4 ⊢ (𝑥 = 𝑖 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑖 ∈ 𝐴))) |
19 | 16, 18 | sbiev 2303 | . . 3 ⊢ ([𝑖 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑖 ∈ 𝐴)) |
20 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑥𝑉 | |
21 | 7, 20 | nfel 2912 | . . . 4 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉 |
22 | 8 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 𝑖 → (𝐵 ∈ 𝑉 ↔ ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉)) |
23 | 21, 22 | sbiev 2303 | . . 3 ⊢ ([𝑖 / 𝑥]𝐵 ∈ 𝑉 ↔ ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉) |
24 | 12, 19, 23 | 3imtr3i 291 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉) |
25 | csbeq1 3892 | . 2 ⊢ (𝑖 = 𝑗 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑗 / 𝑥⦌𝐵) | |
26 | 1, 2, 3, 10, 24, 25 | funcnv5mpt 32437 | 1 ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ ⦋𝑖 / 𝑥⦌𝐵 ≠ ⦋𝑗 / 𝑥⦌𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 Ⅎwnf 1778 [wsb 2060 ∈ wcel 2099 Ⅎwnfc 2878 ≠ wne 2935 ∀wral 3056 ⦋csb 3889 ↦ cmpt 5225 ◡ccnv 5671 Fun wfun 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 |
This theorem is referenced by: disjdsct 32466 |
Copyright terms: Public domain | W3C validator |