![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcnv4mpt | Structured version Visualization version GIF version |
Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
Ref | Expression |
---|---|
funcnvmpt.0 | ⊢ Ⅎ𝑥𝜑 |
funcnvmpt.1 | ⊢ Ⅎ𝑥𝐴 |
funcnvmpt.2 | ⊢ Ⅎ𝑥𝐹 |
funcnvmpt.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
funcnvmpt.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
funcnv4mpt | ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ ⦋𝑖 / 𝑥⦌𝐵 ≠ ⦋𝑗 / 𝑥⦌𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . 2 ⊢ Ⅎ𝑖𝜑 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑖𝐴 | |
3 | nfcv 2908 | . 2 ⊢ Ⅎ𝑖𝐹 | |
4 | funcnvmpt.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | funcnvmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
6 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑖𝐵 | |
7 | nfcsb1v 3946 | . . . 4 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 | |
8 | csbeq1a 3935 | . . . 4 ⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) | |
9 | 5, 2, 6, 7, 8 | cbvmptf 5275 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑥⦌𝐵) |
10 | 4, 9 | eqtri 2768 | . 2 ⊢ 𝐹 = (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑥⦌𝐵) |
11 | funcnvmpt.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
12 | 11 | sbimi 2074 | . . 3 ⊢ ([𝑖 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) → [𝑖 / 𝑥]𝐵 ∈ 𝑉) |
13 | funcnvmpt.0 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
14 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑖 | |
15 | 14, 5 | nfel 2923 | . . . . 5 ⊢ Ⅎ𝑥 𝑖 ∈ 𝐴 |
16 | 13, 15 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑖 ∈ 𝐴) |
17 | eleq1w 2827 | . . . . 5 ⊢ (𝑥 = 𝑖 → (𝑥 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) | |
18 | 17 | anbi2d 629 | . . . 4 ⊢ (𝑥 = 𝑖 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑖 ∈ 𝐴))) |
19 | 16, 18 | sbiev 2318 | . . 3 ⊢ ([𝑖 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑖 ∈ 𝐴)) |
20 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑉 | |
21 | 7, 20 | nfel 2923 | . . . 4 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉 |
22 | 8 | eleq1d 2829 | . . . 4 ⊢ (𝑥 = 𝑖 → (𝐵 ∈ 𝑉 ↔ ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉)) |
23 | 21, 22 | sbiev 2318 | . . 3 ⊢ ([𝑖 / 𝑥]𝐵 ∈ 𝑉 ↔ ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉) |
24 | 12, 19, 23 | 3imtr3i 291 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉) |
25 | csbeq1 3924 | . 2 ⊢ (𝑖 = 𝑗 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑗 / 𝑥⦌𝐵) | |
26 | 1, 2, 3, 10, 24, 25 | funcnv5mpt 32686 | 1 ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ ⦋𝑖 / 𝑥⦌𝐵 ≠ ⦋𝑗 / 𝑥⦌𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 Ⅎwnf 1781 [wsb 2064 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 ∀wral 3067 ⦋csb 3921 ↦ cmpt 5249 ◡ccnv 5699 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: disjdsct 32714 |
Copyright terms: Public domain | W3C validator |