Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnv4mpt Structured version   Visualization version   GIF version

Theorem funcnv4mpt 32686
Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 2-Mar-2017.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
funcnv4mpt (𝜑 → (Fun 𝐹 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
Distinct variable groups:   𝑖,𝑗,𝑥   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝑖,𝐹   𝑥,𝑉   𝜑,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem funcnv4mpt
StepHypRef Expression
1 nfv 1912 . 2 𝑖𝜑
2 nfcv 2903 . 2 𝑖𝐴
3 nfcv 2903 . 2 𝑖𝐹
4 funcnvmpt.3 . . 3 𝐹 = (𝑥𝐴𝐵)
5 funcnvmpt.1 . . . 4 𝑥𝐴
6 nfcv 2903 . . . 4 𝑖𝐵
7 nfcsb1v 3933 . . . 4 𝑥𝑖 / 𝑥𝐵
8 csbeq1a 3922 . . . 4 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
95, 2, 6, 7, 8cbvmptf 5257 . . 3 (𝑥𝐴𝐵) = (𝑖𝐴𝑖 / 𝑥𝐵)
104, 9eqtri 2763 . 2 𝐹 = (𝑖𝐴𝑖 / 𝑥𝐵)
11 funcnvmpt.4 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
1211sbimi 2072 . . 3 ([𝑖 / 𝑥](𝜑𝑥𝐴) → [𝑖 / 𝑥]𝐵𝑉)
13 funcnvmpt.0 . . . . 5 𝑥𝜑
14 nfcv 2903 . . . . . 6 𝑥𝑖
1514, 5nfel 2918 . . . . 5 𝑥 𝑖𝐴
1613, 15nfan 1897 . . . 4 𝑥(𝜑𝑖𝐴)
17 eleq1w 2822 . . . . 5 (𝑥 = 𝑖 → (𝑥𝐴𝑖𝐴))
1817anbi2d 630 . . . 4 (𝑥 = 𝑖 → ((𝜑𝑥𝐴) ↔ (𝜑𝑖𝐴)))
1916, 18sbiev 2313 . . 3 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑖𝐴))
20 nfcv 2903 . . . . 5 𝑥𝑉
217, 20nfel 2918 . . . 4 𝑥𝑖 / 𝑥𝐵𝑉
228eleq1d 2824 . . . 4 (𝑥 = 𝑖 → (𝐵𝑉𝑖 / 𝑥𝐵𝑉))
2321, 22sbiev 2313 . . 3 ([𝑖 / 𝑥]𝐵𝑉𝑖 / 𝑥𝐵𝑉)
2412, 19, 233imtr3i 291 . 2 ((𝜑𝑖𝐴) → 𝑖 / 𝑥𝐵𝑉)
25 csbeq1 3911 . 2 (𝑖 = 𝑗𝑖 / 𝑥𝐵 = 𝑗 / 𝑥𝐵)
261, 2, 3, 10, 24, 25funcnv5mpt 32685 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wnf 1780  [wsb 2062  wcel 2106  wnfc 2888  wne 2938  wral 3059  csb 3908  cmpt 5231  ccnv 5688  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by:  disjdsct  32718
  Copyright terms: Public domain W3C validator