| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcnv4mpt | Structured version Visualization version GIF version | ||
| Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
| Ref | Expression |
|---|---|
| funcnvmpt.0 | ⊢ Ⅎ𝑥𝜑 |
| funcnvmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| funcnvmpt.2 | ⊢ Ⅎ𝑥𝐹 |
| funcnvmpt.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| funcnvmpt.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| funcnv4mpt | ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ ⦋𝑖 / 𝑥⦌𝐵 ≠ ⦋𝑗 / 𝑥⦌𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑖𝜑 | |
| 2 | nfcv 2892 | . 2 ⊢ Ⅎ𝑖𝐴 | |
| 3 | nfcv 2892 | . 2 ⊢ Ⅎ𝑖𝐹 | |
| 4 | funcnvmpt.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | funcnvmpt.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 6 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑖𝐵 | |
| 7 | nfcsb1v 3872 | . . . 4 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 | |
| 8 | csbeq1a 3862 | . . . 4 ⊢ (𝑥 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑥⦌𝐵) | |
| 9 | 5, 2, 6, 7, 8 | cbvmptf 5189 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑥⦌𝐵) |
| 10 | 4, 9 | eqtri 2753 | . 2 ⊢ 𝐹 = (𝑖 ∈ 𝐴 ↦ ⦋𝑖 / 𝑥⦌𝐵) |
| 11 | funcnvmpt.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 12 | 11 | sbimi 2076 | . . 3 ⊢ ([𝑖 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) → [𝑖 / 𝑥]𝐵 ∈ 𝑉) |
| 13 | funcnvmpt.0 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 14 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥𝑖 | |
| 15 | 14, 5 | nfel 2907 | . . . . 5 ⊢ Ⅎ𝑥 𝑖 ∈ 𝐴 |
| 16 | 13, 15 | nfan 1900 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑖 ∈ 𝐴) |
| 17 | eleq1w 2812 | . . . . 5 ⊢ (𝑥 = 𝑖 → (𝑥 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) | |
| 18 | 17 | anbi2d 630 | . . . 4 ⊢ (𝑥 = 𝑖 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑖 ∈ 𝐴))) |
| 19 | 16, 18 | sbiev 2314 | . . 3 ⊢ ([𝑖 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑖 ∈ 𝐴)) |
| 20 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝑉 | |
| 21 | 7, 20 | nfel 2907 | . . . 4 ⊢ Ⅎ𝑥⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉 |
| 22 | 8 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝑖 → (𝐵 ∈ 𝑉 ↔ ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉)) |
| 23 | 21, 22 | sbiev 2314 | . . 3 ⊢ ([𝑖 / 𝑥]𝐵 ∈ 𝑉 ↔ ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉) |
| 24 | 12, 19, 23 | 3imtr3i 291 | . 2 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑥⦌𝐵 ∈ 𝑉) |
| 25 | csbeq1 3851 | . 2 ⊢ (𝑖 = 𝑗 → ⦋𝑖 / 𝑥⦌𝐵 = ⦋𝑗 / 𝑥⦌𝐵) | |
| 26 | 1, 2, 3, 10, 24, 25 | funcnv5mpt 32640 | 1 ⊢ (𝜑 → (Fun ◡𝐹 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ ⦋𝑖 / 𝑥⦌𝐵 ≠ ⦋𝑗 / 𝑥⦌𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 Ⅎwnf 1784 [wsb 2066 ∈ wcel 2110 Ⅎwnfc 2877 ≠ wne 2926 ∀wral 3045 ⦋csb 3848 ↦ cmpt 5170 ◡ccnv 5613 Fun wfun 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-fv 6485 |
| This theorem is referenced by: disjdsct 32674 |
| Copyright terms: Public domain | W3C validator |