Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnv4mpt Structured version   Visualization version   GIF version

Theorem funcnv4mpt 32626
Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 2-Mar-2017.)
Hypotheses
Ref Expression
funcnvmpt.0 𝑥𝜑
funcnvmpt.1 𝑥𝐴
funcnvmpt.2 𝑥𝐹
funcnvmpt.3 𝐹 = (𝑥𝐴𝐵)
funcnvmpt.4 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
funcnv4mpt (𝜑 → (Fun 𝐹 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
Distinct variable groups:   𝑖,𝑗,𝑥   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗   𝑖,𝐹   𝑥,𝑉   𝜑,𝑖,𝑗
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥,𝑗)   𝑉(𝑖,𝑗)

Proof of Theorem funcnv4mpt
StepHypRef Expression
1 nfv 1914 . 2 𝑖𝜑
2 nfcv 2891 . 2 𝑖𝐴
3 nfcv 2891 . 2 𝑖𝐹
4 funcnvmpt.3 . . 3 𝐹 = (𝑥𝐴𝐵)
5 funcnvmpt.1 . . . 4 𝑥𝐴
6 nfcv 2891 . . . 4 𝑖𝐵
7 nfcsb1v 3877 . . . 4 𝑥𝑖 / 𝑥𝐵
8 csbeq1a 3867 . . . 4 (𝑥 = 𝑖𝐵 = 𝑖 / 𝑥𝐵)
95, 2, 6, 7, 8cbvmptf 5195 . . 3 (𝑥𝐴𝐵) = (𝑖𝐴𝑖 / 𝑥𝐵)
104, 9eqtri 2752 . 2 𝐹 = (𝑖𝐴𝑖 / 𝑥𝐵)
11 funcnvmpt.4 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
1211sbimi 2075 . . 3 ([𝑖 / 𝑥](𝜑𝑥𝐴) → [𝑖 / 𝑥]𝐵𝑉)
13 funcnvmpt.0 . . . . 5 𝑥𝜑
14 nfcv 2891 . . . . . 6 𝑥𝑖
1514, 5nfel 2906 . . . . 5 𝑥 𝑖𝐴
1613, 15nfan 1899 . . . 4 𝑥(𝜑𝑖𝐴)
17 eleq1w 2811 . . . . 5 (𝑥 = 𝑖 → (𝑥𝐴𝑖𝐴))
1817anbi2d 630 . . . 4 (𝑥 = 𝑖 → ((𝜑𝑥𝐴) ↔ (𝜑𝑖𝐴)))
1916, 18sbiev 2313 . . 3 ([𝑖 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑖𝐴))
20 nfcv 2891 . . . . 5 𝑥𝑉
217, 20nfel 2906 . . . 4 𝑥𝑖 / 𝑥𝐵𝑉
228eleq1d 2813 . . . 4 (𝑥 = 𝑖 → (𝐵𝑉𝑖 / 𝑥𝐵𝑉))
2321, 22sbiev 2313 . . 3 ([𝑖 / 𝑥]𝐵𝑉𝑖 / 𝑥𝐵𝑉)
2412, 19, 233imtr3i 291 . 2 ((𝜑𝑖𝐴) → 𝑖 / 𝑥𝐵𝑉)
25 csbeq1 3856 . 2 (𝑖 = 𝑗𝑖 / 𝑥𝐵 = 𝑗 / 𝑥𝐵)
261, 2, 3, 10, 24, 25funcnv5mpt 32625 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗𝑖 / 𝑥𝐵𝑗 / 𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wnf 1783  [wsb 2065  wcel 2109  wnfc 2876  wne 2925  wral 3044  csb 3853  cmpt 5176  ccnv 5622  Fun wfun 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  disjdsct  32659
  Copyright terms: Public domain W3C validator