| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setinds2regs | Structured version Visualization version GIF version | ||
| Description: Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by BTernaryTau, 31-Dec-2025.) |
| Ref | Expression |
|---|---|
| setinds2regs.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| setinds2regs.2 | ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) |
| Ref | Expression |
|---|---|
| setinds2regs | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3438 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | setinds2regs.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | cbvabv 2800 | . . . 4 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| 4 | setindregs 35100 | . . . . 5 ⊢ (∀𝑥(𝑥 ⊆ {𝑦 ∣ 𝜓} → 𝑥 ∈ {𝑦 ∣ 𝜓}) → {𝑦 ∣ 𝜓} = V) | |
| 5 | ssabral 4014 | . . . . . . 7 ⊢ (𝑥 ⊆ {𝑦 ∣ 𝜓} ↔ ∀𝑦 ∈ 𝑥 𝜓) | |
| 6 | setinds2regs.2 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) | |
| 7 | 5, 6 | sylbi 217 | . . . . . 6 ⊢ (𝑥 ⊆ {𝑦 ∣ 𝜓} → 𝜑) |
| 8 | 3 | eqabcri 2873 | . . . . . 6 ⊢ (𝜑 ↔ 𝑥 ∈ {𝑦 ∣ 𝜓}) |
| 9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝑥 ⊆ {𝑦 ∣ 𝜓} → 𝑥 ∈ {𝑦 ∣ 𝜓}) |
| 10 | 4, 9 | mpg 1798 | . . . 4 ⊢ {𝑦 ∣ 𝜓} = V |
| 11 | 3, 10 | eqtri 2753 | . . 3 ⊢ {𝑥 ∣ 𝜑} = V |
| 12 | 11 | eqabcri 2873 | . 2 ⊢ (𝜑 ↔ 𝑥 ∈ V) |
| 13 | 1, 12 | mpbir 231 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 {cab 2708 ∀wral 3045 Vcvv 3434 ⊆ wss 3900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-regs 35096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-v 3436 df-dif 3903 df-in 3907 df-ss 3917 df-nul 4282 |
| This theorem is referenced by: tz9.1regs 35102 |
| Copyright terms: Public domain | W3C validator |