Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds2regs Structured version   Visualization version   GIF version

Theorem setinds2regs 35065
Description: Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by BTernaryTau, 31-Dec-2025.)
Hypotheses
Ref Expression
setinds2regs.1 (𝑥 = 𝑦 → (𝜑𝜓))
setinds2regs.2 (∀𝑦𝑥 𝜓𝜑)
Assertion
Ref Expression
setinds2regs 𝜑
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem setinds2regs
StepHypRef Expression
1 vex 3442 . 2 𝑥 ∈ V
2 setinds2regs.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
32cbvabv 2799 . . . 4 {𝑥𝜑} = {𝑦𝜓}
4 setindregs 35064 . . . . 5 (∀𝑥(𝑥 ⊆ {𝑦𝜓} → 𝑥 ∈ {𝑦𝜓}) → {𝑦𝜓} = V)
5 ssabral 4019 . . . . . . 7 (𝑥 ⊆ {𝑦𝜓} ↔ ∀𝑦𝑥 𝜓)
6 setinds2regs.2 . . . . . . 7 (∀𝑦𝑥 𝜓𝜑)
75, 6sylbi 217 . . . . . 6 (𝑥 ⊆ {𝑦𝜓} → 𝜑)
83eqabcri 2872 . . . . . 6 (𝜑𝑥 ∈ {𝑦𝜓})
97, 8sylib 218 . . . . 5 (𝑥 ⊆ {𝑦𝜓} → 𝑥 ∈ {𝑦𝜓})
104, 9mpg 1797 . . . 4 {𝑦𝜓} = V
113, 10eqtri 2752 . . 3 {𝑥𝜑} = V
1211eqabcri 2872 . 2 (𝜑𝑥 ∈ V)
131, 12mpbir 231 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2707  wral 3044  Vcvv 3438  wss 3905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-regs 35060
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3440  df-dif 3908  df-in 3912  df-ss 3922  df-nul 4287
This theorem is referenced by:  tz9.1regs  35066
  Copyright terms: Public domain W3C validator