Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1omhfbregs Structured version   Visualization version   GIF version

Theorem r1omhfbregs 35121
Description: The class of all hereditarily finite sets is the only class with the property that all sets are members of it iff they are finite and all of their elements are members of it. (Contributed by BTernaryTau, 21-Jan-2026.)
Assertion
Ref Expression
r1omhfbregs (𝐻 = (𝑅1 “ ω) ↔ ∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
Distinct variable group:   𝑥,𝐻,𝑦

Proof of Theorem r1omhfbregs
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1omhf 35108 . . . 4 (𝑥 (𝑅1 “ ω) ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 (𝑅1 “ ω)))
2 eleq2w2 2727 . . . . 5 (𝐻 = (𝑅1 “ ω) → (𝑥𝐻𝑥 (𝑅1 “ ω)))
3 eleq2w2 2727 . . . . . . 7 (𝐻 = (𝑅1 “ ω) → (𝑦𝐻𝑦 (𝑅1 “ ω)))
43ralbidv 3155 . . . . . 6 (𝐻 = (𝑅1 “ ω) → (∀𝑦𝑥 𝑦𝐻 ↔ ∀𝑦𝑥 𝑦 (𝑅1 “ ω)))
54anbi2d 630 . . . . 5 (𝐻 = (𝑅1 “ ω) → ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 (𝑅1 “ ω))))
62, 5bibi12d 345 . . . 4 (𝐻 = (𝑅1 “ ω) → ((𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) ↔ (𝑥 (𝑅1 “ ω) ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 (𝑅1 “ ω)))))
71, 6mpbiri 258 . . 3 (𝐻 = (𝑅1 “ ω) → (𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
87alrimiv 1928 . 2 (𝐻 = (𝑅1 “ ω) → ∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
9 biimp 215 . . . . 5 ((𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → (𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
109alimi 1812 . . . 4 (∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
11 simpr 484 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → ∀𝑦𝑥 𝑦𝐻)
1211imim2i 16 . . . . . . . 8 ((𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → (𝑥𝐻 → ∀𝑦𝑥 𝑦𝐻))
1312alimi 1812 . . . . . . 7 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ∀𝑥(𝑥𝐻 → ∀𝑦𝑥 𝑦𝐻))
14 df-ral 3048 . . . . . . 7 (∀𝑥𝐻𝑦𝑥 𝑦𝐻 ↔ ∀𝑥(𝑥𝐻 → ∀𝑦𝑥 𝑦𝐻))
1513, 14sylibr 234 . . . . . 6 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ∀𝑥𝐻𝑦𝑥 𝑦𝐻)
16 dftr5 5202 . . . . . 6 (Tr 𝐻 ↔ ∀𝑥𝐻𝑦𝑥 𝑦𝐻)
1715, 16sylibr 234 . . . . 5 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → Tr 𝐻)
18 simpl 482 . . . . . . . 8 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥 ∈ Fin)
1918imim2i 16 . . . . . . 7 ((𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → (𝑥𝐻𝑥 ∈ Fin))
2019alimi 1812 . . . . . 6 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ∀𝑥(𝑥𝐻𝑥 ∈ Fin))
21 df-ss 3919 . . . . . 6 (𝐻 ⊆ Fin ↔ ∀𝑥(𝑥𝐻𝑥 ∈ Fin))
2220, 21sylibr 234 . . . . 5 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → 𝐻 ⊆ Fin)
23 trssfir1omregs 35120 . . . . 5 ((Tr 𝐻𝐻 ⊆ Fin) → 𝐻 (𝑅1 “ ω))
2417, 22, 23syl2anc 584 . . . 4 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → 𝐻 (𝑅1 “ ω))
2510, 24syl 17 . . 3 (∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → 𝐻 (𝑅1 “ ω))
26 biimpr 220 . . . . 5 ((𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻))
2726alimi 1812 . . . 4 (∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻))
28 eleq1w 2814 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧 (𝑅1 “ ω) ↔ 𝑤 (𝑅1 “ ω)))
29 eleq1w 2814 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝐻𝑤𝐻))
3028, 29imbi12d 344 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧 (𝑅1 “ ω) → 𝑧𝐻) ↔ (𝑤 (𝑅1 “ ω) → 𝑤𝐻)))
3130imbi2d 340 . . . . . 6 (𝑧 = 𝑤 → ((∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑧 (𝑅1 “ ω) → 𝑧𝐻)) ↔ (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑤 (𝑅1 “ ω) → 𝑤𝐻))))
32 ra4v 3836 . . . . . . 7 (∀𝑤𝑧 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑤 (𝑅1 “ ω) → 𝑤𝐻)) → (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → ∀𝑤𝑧 (𝑤 (𝑅1 “ ω) → 𝑤𝐻)))
33 r1omhf 35108 . . . . . . . . 9 (𝑧 (𝑅1 “ ω) ↔ (𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤 (𝑅1 “ ω)))
34 ralim 3072 . . . . . . . . . 10 (∀𝑤𝑧 (𝑤 (𝑅1 “ ω) → 𝑤𝐻) → (∀𝑤𝑧 𝑤 (𝑅1 “ ω) → ∀𝑤𝑧 𝑤𝐻))
3534anim2d 612 . . . . . . . . 9 (∀𝑤𝑧 (𝑤 (𝑅1 “ ω) → 𝑤𝐻) → ((𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤 (𝑅1 “ ω)) → (𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤𝐻)))
3633, 35biimtrid 242 . . . . . . . 8 (∀𝑤𝑧 (𝑤 (𝑅1 “ ω) → 𝑤𝐻) → (𝑧 (𝑅1 “ ω) → (𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤𝐻)))
37 eleq1w 2814 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 ∈ Fin ↔ 𝑧 ∈ Fin))
38 eleq1w 2814 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦𝐻𝑤𝐻))
3938adantl 481 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐻𝑤𝐻))
40 simpl 482 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑥 = 𝑧)
4139, 40cbvraldva2 3314 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑦𝑥 𝑦𝐻 ↔ ∀𝑤𝑧 𝑤𝐻))
4237, 41anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) ↔ (𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤𝐻)))
43 eleq1w 2814 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐻𝑧𝐻))
4442, 43imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑧 → (((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) ↔ ((𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤𝐻) → 𝑧𝐻)))
4544spvv 1989 . . . . . . . 8 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → ((𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤𝐻) → 𝑧𝐻))
4636, 45syl9r 78 . . . . . . 7 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (∀𝑤𝑧 (𝑤 (𝑅1 “ ω) → 𝑤𝐻) → (𝑧 (𝑅1 “ ω) → 𝑧𝐻)))
4732, 46sylcom 30 . . . . . 6 (∀𝑤𝑧 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑤 (𝑅1 “ ω) → 𝑤𝐻)) → (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑧 (𝑅1 “ ω) → 𝑧𝐻)))
4831, 47setinds2regs 35117 . . . . 5 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑧 (𝑅1 “ ω) → 𝑧𝐻))
4948ssrdv 3940 . . . 4 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑅1 “ ω) ⊆ 𝐻)
5027, 49syl 17 . . 3 (∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → (𝑅1 “ ω) ⊆ 𝐻)
5125, 50eqssd 3952 . 2 (∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → 𝐻 = (𝑅1 “ ω))
528, 51impbii 209 1 (𝐻 = (𝑅1 “ ω) ↔ ∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  wral 3047  wss 3902   cuni 4859  Tr wtr 5198  cima 5619  ωcom 7796  Fincfn 8869  𝑅1cr1 9652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-regs 35112
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873  df-r1 9654  df-rank 9655
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator