Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1omhfbregs Structured version   Visualization version   GIF version

Theorem r1omhfbregs 35154
Description: The class of all hereditarily finite sets is the only class with the property that all sets are members of it iff they are finite and all of their elements are members of it. This version of r1omhfb 35144 replaces setinds2 9648 with setinds2regs 35150 and trssfir1om 35143 with trssfir1omregs 35153. (Contributed by BTernaryTau, 21-Jan-2026.)
Assertion
Ref Expression
r1omhfbregs (𝐻 = (𝑅1 “ ω) ↔ ∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
Distinct variable group:   𝑥,𝐻,𝑦

Proof of Theorem r1omhfbregs
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1omhf 35138 . . . 4 (𝑥 (𝑅1 “ ω) ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 (𝑅1 “ ω)))
2 eleq2w2 2729 . . . . 5 (𝐻 = (𝑅1 “ ω) → (𝑥𝐻𝑥 (𝑅1 “ ω)))
3 eleq2w2 2729 . . . . . . 7 (𝐻 = (𝑅1 “ ω) → (𝑦𝐻𝑦 (𝑅1 “ ω)))
43ralbidv 3156 . . . . . 6 (𝐻 = (𝑅1 “ ω) → (∀𝑦𝑥 𝑦𝐻 ↔ ∀𝑦𝑥 𝑦 (𝑅1 “ ω)))
54anbi2d 630 . . . . 5 (𝐻 = (𝑅1 “ ω) → ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 (𝑅1 “ ω))))
62, 5bibi12d 345 . . . 4 (𝐻 = (𝑅1 “ ω) → ((𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) ↔ (𝑥 (𝑅1 “ ω) ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦 (𝑅1 “ ω)))))
71, 6mpbiri 258 . . 3 (𝐻 = (𝑅1 “ ω) → (𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
87alrimiv 1928 . 2 (𝐻 = (𝑅1 “ ω) → ∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
9 biimp 215 . . . . 5 ((𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → (𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
109alimi 1812 . . . 4 (∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
11 simpr 484 . . . . . . . . 9 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → ∀𝑦𝑥 𝑦𝐻)
1211imim2i 16 . . . . . . . 8 ((𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → (𝑥𝐻 → ∀𝑦𝑥 𝑦𝐻))
1312alimi 1812 . . . . . . 7 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ∀𝑥(𝑥𝐻 → ∀𝑦𝑥 𝑦𝐻))
14 df-ral 3049 . . . . . . 7 (∀𝑥𝐻𝑦𝑥 𝑦𝐻 ↔ ∀𝑥(𝑥𝐻 → ∀𝑦𝑥 𝑦𝐻))
1513, 14sylibr 234 . . . . . 6 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ∀𝑥𝐻𝑦𝑥 𝑦𝐻)
16 dftr5 5204 . . . . . 6 (Tr 𝐻 ↔ ∀𝑥𝐻𝑦𝑥 𝑦𝐻)
1715, 16sylibr 234 . . . . 5 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → Tr 𝐻)
18 simpl 482 . . . . . . . 8 ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥 ∈ Fin)
1918imim2i 16 . . . . . . 7 ((𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → (𝑥𝐻𝑥 ∈ Fin))
2019alimi 1812 . . . . . 6 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ∀𝑥(𝑥𝐻𝑥 ∈ Fin))
21 df-ss 3915 . . . . . 6 (𝐻 ⊆ Fin ↔ ∀𝑥(𝑥𝐻𝑥 ∈ Fin))
2220, 21sylibr 234 . . . . 5 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → 𝐻 ⊆ Fin)
23 trssfir1omregs 35153 . . . . 5 ((Tr 𝐻𝐻 ⊆ Fin) → 𝐻 (𝑅1 “ ω))
2417, 22, 23syl2anc 584 . . . 4 (∀𝑥(𝑥𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → 𝐻 (𝑅1 “ ω))
2510, 24syl 17 . . 3 (∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → 𝐻 (𝑅1 “ ω))
26 biimpr 220 . . . . 5 ((𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻))
2726alimi 1812 . . . 4 (∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → ∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻))
28 eleq1w 2816 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧 (𝑅1 “ ω) ↔ 𝑤 (𝑅1 “ ω)))
29 eleq1w 2816 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝐻𝑤𝐻))
3028, 29imbi12d 344 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧 (𝑅1 “ ω) → 𝑧𝐻) ↔ (𝑤 (𝑅1 “ ω) → 𝑤𝐻)))
3130imbi2d 340 . . . . . 6 (𝑧 = 𝑤 → ((∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑧 (𝑅1 “ ω) → 𝑧𝐻)) ↔ (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑤 (𝑅1 “ ω) → 𝑤𝐻))))
32 ra4v 3832 . . . . . . 7 (∀𝑤𝑧 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑤 (𝑅1 “ ω) → 𝑤𝐻)) → (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → ∀𝑤𝑧 (𝑤 (𝑅1 “ ω) → 𝑤𝐻)))
33 r1omhf 35138 . . . . . . . . 9 (𝑧 (𝑅1 “ ω) ↔ (𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤 (𝑅1 “ ω)))
34 ralim 3073 . . . . . . . . . 10 (∀𝑤𝑧 (𝑤 (𝑅1 “ ω) → 𝑤𝐻) → (∀𝑤𝑧 𝑤 (𝑅1 “ ω) → ∀𝑤𝑧 𝑤𝐻))
3534anim2d 612 . . . . . . . . 9 (∀𝑤𝑧 (𝑤 (𝑅1 “ ω) → 𝑤𝐻) → ((𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤 (𝑅1 “ ω)) → (𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤𝐻)))
3633, 35biimtrid 242 . . . . . . . 8 (∀𝑤𝑧 (𝑤 (𝑅1 “ ω) → 𝑤𝐻) → (𝑧 (𝑅1 “ ω) → (𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤𝐻)))
37 eleq1w 2816 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 ∈ Fin ↔ 𝑧 ∈ Fin))
38 eleq1w 2816 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑦𝐻𝑤𝐻))
3938adantl 481 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑦 = 𝑤) → (𝑦𝐻𝑤𝐻))
40 simpl 482 . . . . . . . . . . . 12 ((𝑥 = 𝑧𝑦 = 𝑤) → 𝑥 = 𝑧)
4139, 40cbvraldva2 3315 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∀𝑦𝑥 𝑦𝐻 ↔ ∀𝑤𝑧 𝑤𝐻))
4237, 41anbi12d 632 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) ↔ (𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤𝐻)))
43 eleq1w 2816 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐻𝑧𝐻))
4442, 43imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑧 → (((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) ↔ ((𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤𝐻) → 𝑧𝐻)))
4544spvv 1989 . . . . . . . 8 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → ((𝑧 ∈ Fin ∧ ∀𝑤𝑧 𝑤𝐻) → 𝑧𝐻))
4636, 45syl9r 78 . . . . . . 7 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (∀𝑤𝑧 (𝑤 (𝑅1 “ ω) → 𝑤𝐻) → (𝑧 (𝑅1 “ ω) → 𝑧𝐻)))
4732, 46sylcom 30 . . . . . 6 (∀𝑤𝑧 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑤 (𝑅1 “ ω) → 𝑤𝐻)) → (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑧 (𝑅1 “ ω) → 𝑧𝐻)))
4831, 47setinds2regs 35150 . . . . 5 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑧 (𝑅1 “ ω) → 𝑧𝐻))
4948ssrdv 3936 . . . 4 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻) → 𝑥𝐻) → (𝑅1 “ ω) ⊆ 𝐻)
5027, 49syl 17 . . 3 (∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → (𝑅1 “ ω) ⊆ 𝐻)
5125, 50eqssd 3948 . 2 (∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)) → 𝐻 = (𝑅1 “ ω))
528, 51impbii 209 1 (𝐻 = (𝑅1 “ ω) ↔ ∀𝑥(𝑥𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦𝑥 𝑦𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2113  wral 3048  wss 3898   cuni 4858  Tr wtr 5200  cima 5622  ωcom 7802  Fincfn 8875  𝑅1cr1 9662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-regs 35145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-en 8876  df-dom 8877  df-fin 8879  df-r1 9664  df-rank 9665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator