| Step | Hyp | Ref
| Expression |
| 1 | | r1omhf 35108 |
. . . 4
⊢ (𝑥 ∈ ∪ (𝑅1 “ ω) ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪
(𝑅1 “ ω))) |
| 2 | | eleq2w2 2727 |
. . . . 5
⊢ (𝐻 = ∪
(𝑅1 “ ω) → (𝑥 ∈ 𝐻 ↔ 𝑥 ∈ ∪
(𝑅1 “ ω))) |
| 3 | | eleq2w2 2727 |
. . . . . . 7
⊢ (𝐻 = ∪
(𝑅1 “ ω) → (𝑦 ∈ 𝐻 ↔ 𝑦 ∈ ∪
(𝑅1 “ ω))) |
| 4 | 3 | ralbidv 3155 |
. . . . . 6
⊢ (𝐻 = ∪
(𝑅1 “ ω) → (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪
(𝑅1 “ ω))) |
| 5 | 4 | anbi2d 630 |
. . . . 5
⊢ (𝐻 = ∪
(𝑅1 “ ω) → ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪
(𝑅1 “ ω)))) |
| 6 | 2, 5 | bibi12d 345 |
. . . 4
⊢ (𝐻 = ∪
(𝑅1 “ ω) → ((𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) ↔ (𝑥 ∈ ∪
(𝑅1 “ ω) ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ ∪
(𝑅1 “ ω))))) |
| 7 | 1, 6 | mpbiri 258 |
. . 3
⊢ (𝐻 = ∪
(𝑅1 “ ω) → (𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻))) |
| 8 | 7 | alrimiv 1928 |
. 2
⊢ (𝐻 = ∪
(𝑅1 “ ω) → ∀𝑥(𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻))) |
| 9 | | biimp 215 |
. . . . 5
⊢ ((𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → (𝑥 ∈ 𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻))) |
| 10 | 9 | alimi 1812 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → ∀𝑥(𝑥 ∈ 𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻))) |
| 11 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) |
| 12 | 11 | imim2i 16 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → (𝑥 ∈ 𝐻 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) |
| 13 | 12 | alimi 1812 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ 𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → ∀𝑥(𝑥 ∈ 𝐻 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) |
| 14 | | df-ral 3048 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐻 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ↔ ∀𝑥(𝑥 ∈ 𝐻 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) |
| 15 | 13, 14 | sylibr 234 |
. . . . . 6
⊢
(∀𝑥(𝑥 ∈ 𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) |
| 16 | | dftr5 5202 |
. . . . . 6
⊢ (Tr 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) |
| 17 | 15, 16 | sylibr 234 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → Tr 𝐻) |
| 18 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ Fin) |
| 19 | 18 | imim2i 16 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → (𝑥 ∈ 𝐻 → 𝑥 ∈ Fin)) |
| 20 | 19 | alimi 1812 |
. . . . . 6
⊢
(∀𝑥(𝑥 ∈ 𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → ∀𝑥(𝑥 ∈ 𝐻 → 𝑥 ∈ Fin)) |
| 21 | | df-ss 3919 |
. . . . . 6
⊢ (𝐻 ⊆ Fin ↔
∀𝑥(𝑥 ∈ 𝐻 → 𝑥 ∈ Fin)) |
| 22 | 20, 21 | sylibr 234 |
. . . . 5
⊢
(∀𝑥(𝑥 ∈ 𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → 𝐻 ⊆ Fin) |
| 23 | | trssfir1omregs 35120 |
. . . . 5
⊢ ((Tr
𝐻 ∧ 𝐻 ⊆ Fin) → 𝐻 ⊆ ∪
(𝑅1 “ ω)) |
| 24 | 17, 22, 23 | syl2anc 584 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ 𝐻 → (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → 𝐻 ⊆ ∪
(𝑅1 “ ω)) |
| 25 | 10, 24 | syl 17 |
. . 3
⊢
(∀𝑥(𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → 𝐻 ⊆ ∪
(𝑅1 “ ω)) |
| 26 | | biimpr 220 |
. . . . 5
⊢ ((𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻)) |
| 27 | 26 | alimi 1812 |
. . . 4
⊢
(∀𝑥(𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → ∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻)) |
| 28 | | eleq1w 2814 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝑧 ∈ ∪
(𝑅1 “ ω) ↔ 𝑤 ∈ ∪
(𝑅1 “ ω))) |
| 29 | | eleq1w 2814 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝑧 ∈ 𝐻 ↔ 𝑤 ∈ 𝐻)) |
| 30 | 28, 29 | imbi12d 344 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → ((𝑧 ∈ ∪
(𝑅1 “ ω) → 𝑧 ∈ 𝐻) ↔ (𝑤 ∈ ∪
(𝑅1 “ ω) → 𝑤 ∈ 𝐻))) |
| 31 | 30 | imbi2d 340 |
. . . . . 6
⊢ (𝑧 = 𝑤 → ((∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) → (𝑧 ∈ ∪
(𝑅1 “ ω) → 𝑧 ∈ 𝐻)) ↔ (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) → (𝑤 ∈ ∪
(𝑅1 “ ω) → 𝑤 ∈ 𝐻)))) |
| 32 | | ra4v 3836 |
. . . . . . 7
⊢
(∀𝑤 ∈
𝑧 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) → (𝑤 ∈ ∪
(𝑅1 “ ω) → 𝑤 ∈ 𝐻)) → (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) → ∀𝑤 ∈ 𝑧 (𝑤 ∈ ∪
(𝑅1 “ ω) → 𝑤 ∈ 𝐻))) |
| 33 | | r1omhf 35108 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ (𝑅1 “ ω) ↔ (𝑧 ∈ Fin ∧ ∀𝑤 ∈ 𝑧 𝑤 ∈ ∪
(𝑅1 “ ω))) |
| 34 | | ralim 3072 |
. . . . . . . . . 10
⊢
(∀𝑤 ∈
𝑧 (𝑤 ∈ ∪
(𝑅1 “ ω) → 𝑤 ∈ 𝐻) → (∀𝑤 ∈ 𝑧 𝑤 ∈ ∪
(𝑅1 “ ω) → ∀𝑤 ∈ 𝑧 𝑤 ∈ 𝐻)) |
| 35 | 34 | anim2d 612 |
. . . . . . . . 9
⊢
(∀𝑤 ∈
𝑧 (𝑤 ∈ ∪
(𝑅1 “ ω) → 𝑤 ∈ 𝐻) → ((𝑧 ∈ Fin ∧ ∀𝑤 ∈ 𝑧 𝑤 ∈ ∪
(𝑅1 “ ω)) → (𝑧 ∈ Fin ∧ ∀𝑤 ∈ 𝑧 𝑤 ∈ 𝐻))) |
| 36 | 33, 35 | biimtrid 242 |
. . . . . . . 8
⊢
(∀𝑤 ∈
𝑧 (𝑤 ∈ ∪
(𝑅1 “ ω) → 𝑤 ∈ 𝐻) → (𝑧 ∈ ∪
(𝑅1 “ ω) → (𝑧 ∈ Fin ∧ ∀𝑤 ∈ 𝑧 𝑤 ∈ 𝐻))) |
| 37 | | eleq1w 2814 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥 ∈ Fin ↔ 𝑧 ∈ Fin)) |
| 38 | | eleq1w 2814 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑤 → (𝑦 ∈ 𝐻 ↔ 𝑤 ∈ 𝐻)) |
| 39 | 38 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝑦 ∈ 𝐻 ↔ 𝑤 ∈ 𝐻)) |
| 40 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧) |
| 41 | 39, 40 | cbvraldva2 3314 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻 ↔ ∀𝑤 ∈ 𝑧 𝑤 ∈ 𝐻)) |
| 42 | 37, 41 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) ↔ (𝑧 ∈ Fin ∧ ∀𝑤 ∈ 𝑧 𝑤 ∈ 𝐻))) |
| 43 | | eleq1w 2814 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐻 ↔ 𝑧 ∈ 𝐻)) |
| 44 | 42, 43 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) ↔ ((𝑧 ∈ Fin ∧ ∀𝑤 ∈ 𝑧 𝑤 ∈ 𝐻) → 𝑧 ∈ 𝐻))) |
| 45 | 44 | spvv 1989 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) → ((𝑧 ∈ Fin ∧ ∀𝑤 ∈ 𝑧 𝑤 ∈ 𝐻) → 𝑧 ∈ 𝐻)) |
| 46 | 36, 45 | syl9r 78 |
. . . . . . 7
⊢
(∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) → (∀𝑤 ∈ 𝑧 (𝑤 ∈ ∪
(𝑅1 “ ω) → 𝑤 ∈ 𝐻) → (𝑧 ∈ ∪
(𝑅1 “ ω) → 𝑧 ∈ 𝐻))) |
| 47 | 32, 46 | sylcom 30 |
. . . . . 6
⊢
(∀𝑤 ∈
𝑧 (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) → (𝑤 ∈ ∪
(𝑅1 “ ω) → 𝑤 ∈ 𝐻)) → (∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) → (𝑧 ∈ ∪
(𝑅1 “ ω) → 𝑧 ∈ 𝐻))) |
| 48 | 31, 47 | setinds2regs 35117 |
. . . . 5
⊢
(∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) → (𝑧 ∈ ∪
(𝑅1 “ ω) → 𝑧 ∈ 𝐻)) |
| 49 | 48 | ssrdv 3940 |
. . . 4
⊢
(∀𝑥((𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻) → 𝑥 ∈ 𝐻) → ∪
(𝑅1 “ ω) ⊆ 𝐻) |
| 50 | 27, 49 | syl 17 |
. . 3
⊢
(∀𝑥(𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → ∪
(𝑅1 “ ω) ⊆ 𝐻) |
| 51 | 25, 50 | eqssd 3952 |
. 2
⊢
(∀𝑥(𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻)) → 𝐻 = ∪
(𝑅1 “ ω)) |
| 52 | 8, 51 | impbii 209 |
1
⊢ (𝐻 = ∪
(𝑅1 “ ω) ↔ ∀𝑥(𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻))) |